logo
    The First Human Epitope Map of the Alphaviral E1 and E2 Proteins Reveals a New E2 Epitope with Significant Virus Neutralizing Activity
    55
    Citation
    77
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Background Venezuelan equine encephalitis virus (VEEV) is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion) and E2 (binds receptor and elicits virus neutralizing antibodies). Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs). Six E2 epitopes (E2c,d,e,f,g,h) bound VEEV-neutralizing antibody and mapped to amino acids (aa) 182–207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs) with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE. Methods We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants. Findings Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115–119. Using a 9 Å resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope. Conclusions The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration of a cocktail of F5n and Hy4 IgGs, which bind to different E2 epitopes, could provide enhanced prophylaxis or immunotherapy for VEEV, while reducing the possibility of generating possibly harmful virus neutralization-escape variants in vivo.
    Keywords:
    Linear epitope
    Epitope mapping
    Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, for which no safe and efficient vaccines or therapeutic means have been developed. Viral particle assembly and budding processes represent potential targets for therapeutic intervention. However, our understanding of the mechanistic process of VEEV assembly, RNA encapsidation, and the roles of different capsid-specific domains in these events remain to be described. The results of this new study demonstrate that the very amino-terminal VEEV capsid-specific subdomain SD1 is a critical player in the particle assembly process. It functions in a virus-specific mode, and its deletion, mutation, or replacement by the same subdomain derived from other alphaviruses has strong negative effects on infectious virus release. VEEV variants with mutated SD1 accumulate adaptive mutations in both SD1 and SD2, which result in a more efficiently replicating phenotype. Moreover, efficient nucleocapsid and particle assembly proceeds only when the two subdomains, SD1 and SD2, are derived from the same alphavirus. These two subdomains together appear to form the central core of VEEV nucleocapsids, and their interaction is one of the driving forces of virion assembly and budding. The similar domain structures of alphavirus capsid proteins suggest that this new knowledge can be applied to other alphaviruses.Alphaviruses are a group of human and animal pathogens which cause periodic outbreaks of highly debilitating diseases. Despite significant progress made in understanding the overall structure of alphavirus and VEEV virions, and glycoprotein spikes in particular, the mechanistic process of nucleocapsid assembly, RNA encapsidation, and the roles of different capsid-specific domains in these processes remain to be described. Our new data demonstrate that the very amino-terminal subdomain of Venezuelan equine encephalitis virus capsid protein, SD1, plays a critical role in the nucleocapsid assembly. It functions synergistically with the following SD2 (helix I) and appears to form a core in the center of nucleocapsid. The core formation is one of the driving forces of alphavirus particle assembly.
    Togaviridae
    Citations (5)
    Venezuelan equine encephalitis virus (VEEV) is an Alphavirus from the family Togaviridae that causes epizootic outbreaks in equids and humans in Central and South America. So far, most studies use conventional reverse transcriptase PCR assays for the detection of the different VEEV subtypes. Here we describe the development of a TaqMan quantitative real-time reverse transcriptase PCR assay for the specific detection and quantitation of all VEEV subtypes which uses in parallel a universal equine encephalitis virus control RNA carrying target sequences of the three equine encephalitis viruses. The control RNA was used to generate standard curves for the calculation of copy numbers of viral genome of Eastern equine encephalitis virus (EEEV), Western equine encephalitis virus (WEEV), and VEEV. The new assay provides a reliable high-throughput method for the detection and quantitation of VEEV RNA in clinical and field samples and allows a rapid differentiation from potentially cocirculating EEEV and WEEV strains. The capability to detect all known VEEV variants was experimentally demonstrated and makes this assay suitable especially for the surveillance of VEEV.
    Togaviridae
    TaqMan
    Alphavirus infection
    Citations (11)
    Abstract LDLRAD3 is a recently defined attachment and entry receptor for Venezuelan equine encephalitis virus (VEEV) 1 , a New World alphavirus that causes severe neurological disease in humans. Here we present near-atomic-resolution cryo-electron microscopy reconstructions of VEEV virus-like particles alone and in a complex with the ectodomains of LDLRAD3. Domain 1 of LDLRAD3 is a low-density lipoprotein receptor type-A module that binds to VEEV by wedging into a cleft created by two adjacent E2–E1 heterodimers in one trimeric spike, and engages domains A and B of E2 and the fusion loop in E1. Atomic modelling of this interface is supported by mutagenesis and anti-VEEV antibody binding competition assays. Notably, VEEV engages LDLRAD3 in a manner that is similar to the way that arthritogenic alphaviruses bind to the structurally unrelated MXRA8 receptor, but with a much smaller interface. These studies further elucidate the structural basis of alphavirus–receptor interactions, which could inform the development of therapies to mitigate infection and disease against multiple members of this family.
    Citations (39)
    Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.
    Sindbis virus
    Alphavirus infection
    Venezuelan equine encephalitis virus (VEEV) is a representative member of the New World alphaviruses. It is transmitted by mosquito vectors and causes highly debilitating disease in humans, equids, and other vertebrate hosts. Despite a continuous public health threat, very few compounds with anti-VEEV activity in cell culture and in mouse models have been identified to date, and rapid development of virus resistance to some of them has been recorded. In this study, we investigated the possibility of using a modified nucleoside analog, β-d-N4-hydroxycytidine (NHC), as an anti-VEEV agent and defined the mechanism of its anti-VEEV activity. The results demonstrate that NHC is a very potent antiviral agent. It affects both the release of genome RNA-containing VEE virions and their infectivity. Both of these antiviral activities are determined by the NHC-induced accumulation of mutations in virus-specific RNAs. The antiviral effect is most prominent when NHC is applied early in the infectious process, during the amplification of negative- and positive-strand RNAs in infected cells. Most importantly, only a low-level resistance of VEEV to NHC can be developed, and it requires acquisition and cooperative function of more than one mutation in nsP4. These adaptive mutations are closely located in the same segment of nsP4. Our data suggest that NHC is more potent than ribavirin as an anti-VEEV agent and likely can be used to treat other alphavirus infections.IMPORTANCE Venezuelan equine encephalitis virus (VEEV) can cause widespread epidemics among humans and domestic animals. VEEV infections result in severe meningoencephalitis and long-term sequelae. No approved therapeutics exist for treatment of VEEV infections. Our study demonstrates that β-d-N4-hydroxycytidine (NHC) is a very potent anti-VEEV compound, with the 50% effective concentration being below 1 μM. The mechanism of NHC antiviral activity is based on induction of high mutation rates in the viral genome. Accordingly, NHC treatment affects both the rates of particle release and the particle infectivity. Most importantly, in contrast to most of the anti-alphavirus drugs that are under development, resistance of VEEV to NHC develops very inefficiently. Even low levels of resistance require acquisition of multiple mutations in the gene of the VEEV-specific RNA-dependent RNA polymerase nsP4.
    Alphavirus infection
    Citations (183)
    Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus and a category B select agent. Currently, no FDA-approved vaccines or therapeutics are available to treat VEEV exposure and resultant disease manifestations. The C-terminus of the VEEV non-structural protein 3 (nsP3) facilitates cell-specific and virus-specific host factor binding preferences among alphaviruses, thereby providing targets of interest when designing novel antiviral therapeutics. In this study, we utilized an overexpression construct encoding HA-tagged nsP3 to identify host proteins that interact with VEEV nsP3 by mass spectrometry. Bioinformatic analyses of the putative interactors identified 42 small molecules with the potential to inhibit the host interaction targets, and thus potentially inhibit VEEV. Three inhibitors, tomatidine, citalopram HBr, and Z-VEID-FMK, reduced replication of both the TC-83 strain and the Trinidad donkey (TrD) strain of VEEV by at least 10-fold in astrocytoma, astroglial, and microglial cells. Further, these inhibitors reduced replication of the related New World (NW) alphavirus Eastern equine encephalitis virus (EEEV) in multiple cell types, thus demonstrating broad-spectrum antiviral activity. Time-course assays revealed all three inhibitors reduced both infectious particle production and positive-sense RNA levels post-infection. Further evaluation of the putative host targets for the three inhibitors revealed an interaction of VEEV nsP3 with TFAP2A, but not eIF2S2. Mechanistic studies utilizing siRNA knockdowns demonstrated that eIF2S2, but not TFAP2A, supports both efficient TC-83 replication and genomic RNA synthesis, but not subgenomic RNA translation. Overall, this work reveals the composition of the VEEV nsP3 proteome and the potential to identify host-based, broad spectrum therapeutic approaches to treat new world alphavirus infections.
    Subgenomic mRNA
    Sindbis virus
    Togaviridae
    Neurotropic virus
    Citations (11)