logo
    Mechanisms of Liver and Muscle Insulin Resistance Induced by Chronic High-Fat Feeding
    403
    Citation
    0
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    To elucidate cellular mechanisms of insulin resistance induced by excess dietary fat, we studied conscious chronically high-fat–fed (HFF) and control chow diet-fed rats during euglycemic-hyperinsulinemic (560 pmol/1 plasma insulin) clamps. Compared with chow diet feeding, fat feeding significantly impaired insulin action (reduced whole body glucose disposal rate, reduced skeletal muscle glucose metabolism, and decreased insulin suppressibility of hepatic glucose production [HGP]). In HFF rats, hyperinsulinemia significantly suppressed circulating free fatty acids but not the intracellular availability of fatty acid in skeletal muscle (long chain fatty acyl-CoA esters remained at 230% above control levels). In HFF animals, acute blockade of β-oxidation using etomoxir increased insulin-stimulated muscle glucose uptake, via a selective increase in the component directed to glycolysis, but did not reverse the defect in net glycogen synthesis or glycogen synthase. In clamp HFF animals, etomoxir did not significantly alter the reduced ability of insulin to suppress HGP, but induced substantial depletion of hepatic glycogen content. This implied that gluconeo-genesis was reduced by inhibition of hepatic fatty acid oxidation and that an alternative mechanism was involved in the elevated HGP in HFF rats. Evidence was then obtained suggesting that this involves a reduction in hepatic glucokinase (GK) activity and an inability of insulin to acutely lower glucose-6-phos-phatase (G-6-Pase) activity. Overall, a 76% increase in the activity ratio G-6-Pase/GK was observed, which would favor net hepatic glucose release and elevated HGP in HFF rats. Thus in the insulin-resistant HFF rat 1) acute hyperinsulinemia fails to quench elevated muscle and liver lipid availability, 2) elevated lipid oxidation opposes insulin stimulation of muscle glucose oxidation (perhaps via the glucose-fatty acid cycle) and suppression of hepatic gluconeogenesis, and 3) mechanisms of impaired insulin-stimulated glucose storage and HGP suppressibility are not dependent on concomitant lipid oxidation; in the case of HGP we provide evidence for pivotal involvement of G-6-Pase and GK in the regulation of HGP by insulin, independent of the glucose source.
    Keywords:
    Hyperinsulinemia
    Glucose clamp technique
    Gluconeogenesis
    Carbohydrate Metabolism
    This study was designed to further characterize the role of insulin and glucagon in the regulation of glucose production and gluconeogenesis during a 2-h mild intensity exercise (40% VO2max) in 14 h fasted healthy male subjects. Endogenous insulin and glucagon secretions were suppressed by the infusion of somatostatin. The pancreatic hormones were replaced singly or in combination to match the hormonal concentrations observed during exercise in control subjects. Glucose turnover was determined by a tracer method using the stable isotope D-[2,3,4,6,6-2H]glucose. Gluconeogenesis was estimated by the simultaneous infusion of L-[1,2,3-13C]alanine to follow the conversion of alanine to glucose. Hepatic glucose production significantly increased from a resting rate of 12.1 +/- 0.2 to 27.6 +/- 1.4 mumol.kg-1.min-1 during exercise (p < 0.05). In the absence of glucagon, this increase in hepatic glucose production during exercise was totally abolished (p < 0.05). When insulin was made deficient, in the presence of glucagon, there was an overshoot in the increase in hepatic glucose production during exercise to 36.4 +/- 1.6 mumol.kg-1.min-1 (p < 0.05). The normal increase in hepatic glucose output during exercise was reproduced when both insulin and glucagon were replaced. Exercise increased gluconeogenesis by 47% above the resting level (p < 0.05). When glucagon was made deficient, in the absence or presence of insulin, this increase in gluconeogenesis was totally suppressed (p < 0.05). Furthermore, glucagon replacement during exercise in the absence of insulin resulted in a further increase in gluconeogenesis to 93% above resting value (p < 0.05). From these observations, it is concluded that during prolonged mild intensity exercise in healthy subjects, the rise in glucagon is essential for the increase in hepatic glucose production and the increase in gluconeogenesis. It is also suggested that the lower level of insulin during exercise still exerts a restraining effect on glucagon-stimulated glucose production and gluconeogenesis, thus preventing hyperglycemia.
    Gluconeogenesis
    Citations (43)
    A total of 24 newborn pigs were used to determine 1) the relationship between the quantity of colostrum consumed and the capacity for gluconeogenesis and fatty acid oxidation and 2) whether fatty acid oxidation limits gluconeogenesis in isolated hepatocytes. Neonatal pigs were obtained prior to nursing and allotted to one of three treatment groups; fed (ad libitum), limit-fed (25% of fed group), or fasted. Hepatocytes were isolated when pigs were 24 h old. Colostrum intake altered the metabolic status of neonates such that the capacity for glucose synthesis and oxidation of octanoate increased with intake. Glucose synthesis with lactate as the substrate was greater (P less than .01) for fed pigs (10.79 mumol glucose.h-1.mg DNA-1) than for either limit-fed (6.56) or fasted counterparts (4.78), which were similar (P greater than .10). Colostrum intake failed to stimulate synthesis from alanine. The oxidation rate for octanoate was similar for fed and limit-fed pigs (.62 and .61 nmol CO2.h-1.mg DNA-1, respectively) but greater (P less than .05) than that observed for fasted counterparts (.36). Oxidation of octanoate (2 mM) was approximately 30-fold greater than for oleate (1 mM); oxidation of the latter was not affected by either colostrum intake or the addition of carnitine (1 mM). The increase in octanoate oxidation, however, did not elicit an increase in glucose synthesis by fasting pigs with either lactate or alanine as precursors. Thus, we conclude that gluconeogenesis is a function of colostrum intake and that reducing equivalents and(or) ATP may not be primary factors limiting glucose synthesis in pigs fasted from birth.
    Gluconeogenesis
    Citations (25)
    Metabolic interactions between fatty acid oxidation and gluconeogenesis were investigated in vivo in 16h-old newborn rats under various nutritional states. As the newborn rat has no white adipose tissue, starvation from birth induces a low rate of hepatic fatty acid oxidation. Hepatic gluconeogenesis in inhibited in the starved newborn rat when compared with the suckling rat, which receives fatty acids through the milk, at the steps catalysed by pyruvate carboxylase and glyceraldehyde 3-phosphate dehydrogenase. These inhibitions are rapidly reversed by triacylglycerol feeding. Inhibition of fatty acid oxidation by pent-4-enoate in the suckling animal mimics the effect of starvation on the pattern of hepatic gluconeogenic metabolites. It is concluded that, in the newborn rat in vivo, hepatic fatty acids oxidation can increase the gluconeogenic flux by providing the acetyl-CoA necessary for the reaction catalysed by pyruvate carboxylase and the reducing equivalents (NADH) to displace the reversible reaction catalysed by glyceraldehyde 3-phosphate dehydrogenase in the direction of gluconeogenesis.
    Gluconeogenesis
    Fatty acid synthesis
    Citations (57)
    Measurement of plasma C2 glucose enrichment is cumbersome. Therefore, the plasma C5 glucose-to-(2)H(2)O rather than the plasma C5-to-C2 glucose ratio commonly has been used to measure gluconeogenesis and glycogenolysis during hyperinsulinemic-euglycemic clamps. The validity of this approach is unknown.Ten nondiabetic and 10 diabetic subjects ingested (2)H(2)O the evening before study. The following morning, insulin was infused at a rate of 0.6 mU . kg(-1) . min(-1) and glucose was clamped at approximately 5.3 mmol/l for 5 h. Plasma C5 glucose, C2 glucose, and (2)H(2)O enrichments were measured hourly from 2 h onward.Plasma C2 glucose and plasma (2)H(2)O enrichment were equal in both groups before the clamp, resulting in equivalent estimates of gluconeogenesis and glycogenolysis. In contrast, plasma C2 glucose and plasma C5 glucose enrichments fell throughout the clamp, whereas plasma (2)H(2)O enrichment remained unchanged. Since the C5 glucose concentration and, hence, the C5 glucose-to-(2)H(2)O ratio is influenced by both gluconeogenesis and glucose clearance, whereas the C5-to-C2 glucose ratio is only influenced by gluconeogenesis, the C5 glucose-to-(2)H(2)O ratio overestimated (P < 0.01) gluconeogenesis during the clamp. This resulted in biologically implausible negative (i.e., calculated rates of gluconeogenesis exceeding total endogenous glucose production) rates of glycogenolysis in both the nondiabetic and diabetic subjects.Plasma C5 glucose-to-(2)H(2)O ratio does not provide an accurate assessment of gluconeogenesis in nondiabetic or diabetic subjects during a traditional (i.e., 2-3 h) hyperinsulinemic-euglycemic clamp. The conclusions of studies that have used this approach need to be reevaluated.
    Gluconeogenesis
    Glycogenolysis
    Glucose clamp technique
    Clamp
    Citations (11)
    Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471-E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h. The aim of this study was to investigate possible mechanism(s) by which glucose infusion causes insulin resistance in skeletal muscle and in particular to examine whether this was associated with changes in insulin signaling. Hyperglycemia (~10 mM) was produced in cannulated male Wistar rats for up to 5 h. The glucose infusion rate required to maintain this hyperglycemia progressively lessened over 5 h (by 25%, P < 0.0001 at 5 h) without any alteration in plasma insulin levels consistent with the development of insulin resistance. Muscle glucose uptake in vivo (44%; P < 0.05) and glycogen synthesis rate (52%; P < 0.001) were reduced after 5 h compared with after 3 h of infusion. Despite these changes, there was no decrease in the phosphorylation state of multiple insulin signaling intermediates [insulin receptor, Akt, AS160 (Akt substrate of 160 kDa), glycogen synthase kinase-3beta] over the same time course. In isolated soleus strips taken from control or 1- or 5-h glucose-infused animals, insulin-stimulated 2-deoxyglucose transport was similar, but glycogen synthesis was significantly reduced in the 5-h muscle sample (68% vs. 1-h sample; P < 0.001). These results suggest that the reduced muscle glucose uptake in rats after 5 h of acute hyperglycemia is due more to the metabolic effects of excess glycogen storage than to a defect in insulin signaling or glucose transport.
    Glucose clamp technique
    Citations (52)
    We compared estimates of in vivo insulin action derived from insulin tolerance tests (ITT) and euglycemic and hyperglycemic glucose clamp studies in 17 normal subjects and 19 patients with various diseases characterized by insulin resistance. Fifteen subjects underwent an ITT and a euglycemic clamp study, 17 subjects underwent an ITT and a hyperglycemic clamp study, and 4 subjects underwent all 3 tests. The ITT consisted of a bolus iv injection of regular insulin (0.1 U/kg BW). The plasma glucose disappearance rate during the 3- to 15-min period following the insulin injection was taken as a measure of insulin action. In both euglycemic and hyperglycemic clamp studies, which were carried out with standard techniques, the ratio between the amount of glucose infused to maintain glycemia at the desired level and the mean plasma insulin concentration from 60-120 min (M) (euglycemic clamp studies) or 20-120 min (I) (hyperglycemic clamp studies) was used as a measure of insulin action. A close correlation was found between plasma glucose disappearance rate and the M/I ratio during either the euglycemic (r = 0.811; P less than 0.001) or the hyperglycemic (r = 0.826; P less than 0.001) clamp studies. These results suggest that the 15-min ITT is suitable as a simple and rapid estimation of in vivo insulin action when glucose clamp studies are not feasible, as in large series of subjects or serial studies.
    Clamp
    Glucose clamp technique
    Glucose tolerance test
    Citations (527)