logo
    Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.
    Heparanase
    Glycocalyx
    Perlecan
    Citations (13)
    Heparan sulfate is a highly sulfated polysaccharide abundantly present in the extracellular matrix. Heparan sulfate consists of a disaccharide repeating unit of glucosamine and glucuronic and iduronic acid residues. The functions of heparan sulfate are largely dictated by its size as well as the sulfation patterns. Heparanase is an enzyme that cleaves heparan sulfate polysaccharide into smaller fragments, regulating the functions of heparan sulfate. Understanding the substrate specificity plays a critical role in dissecting the biological functions of heparanase and heparan sulfate. The prevailing view is that heparanase recognizes specific sulfation patterns in heparan sulfate. However, emerging evidence suggests that heparanase is capable of varying its substrate specificities depending on the saccharide structures around the cleavage site. The plastic substrate specificity suggests a complex role of heparanase in regulating the structures of heparan sulfate in matrix biology.
    Heparanase
    Iduronic acid
    Perlecan
    Sulfatase
    Sulfotransferase
    Heparanase is the only mammalian heparan sulfate-degrading enzymes;it could cleave heparan sulfate(HS) which links to heparan sulfate Proteoglycans(HSPGs).In this review,the heparanase's effects on tumor angiogenesis,its expression in normal tissue,tumor tissue and metastatic tissue,and its correlation to tumor metastasis were described;recent progress in searching for novel antitumor drugs through screening for inhibitor of heparanase was summarized.
    Heparanase
    Perlecan
    Citations (0)
    The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.
    Heparanase
    Perlecan
    Endoglycosidase
    Citations (127)