Early development and gravitropic response of lateral roots inArabidopsis thaliana
54
Citation
35
Reference
10
Related Paper
Citation Trend
Abstract:
Root system architecture plays an important role in determining nutrient and water acquisition and is modulated by endogenous and environmental factors, resulting in considerable developmental plasticity. The orientation of primary root growth in response to gravity (gravitropism) has been studied extensively, but little is known about the behaviour of lateral roots in response to this signal. Here, we analysed the response of lateral roots to gravity and, consistently with previous observations, we showed that gravitropism was acquired slowly after emergence. Using a lateral root induction system, we studied the kinetics for the appearance of statoliths, phloem connections and auxin transporter gene expression patterns. We found that statoliths could not be detected until 1 day after emergence, whereas the gravitropic curvature of the lateral root started earlier. Auxin transporters modulate auxin distribution in primary root gravitropism. We found differences regarding PIN3 and AUX1 expression patterns between the lateral root and the primary root apices. Especially PIN3, which is involved in primary root gravitropism, was not expressed in the lateral root columella. Our work revealed new developmental transitions occurring in lateral roots after emergence, and auxin transporter expression patterns that might explain the specific response of lateral roots to gravity.Keywords:
Gravitropism
Lateral root
Columella
Root cap
Polar auxin transport
Correlations between regeneration of the root cap and recovery of a gravitropic response were studied using primary roots of Phaseolus vulgaris. After removal of various lengths of the root tip a gravistimulus was continuously given to the root. The statistical analysis of data showed that recovery of the gravitropic response was gradually delayed as the length of the tips removed increased. This suggested that the columella cells of the root cap were involved in gravitropism. When the root cap was completely removed, the roots did not respond to gravistimuli for the first 15 h and began to reorient their growth direction at 20 h. At this time, the columella cells had just begun to regenerate and had immature amyloplasts which did not sufficiently form a sediment. These results suggest that other systems of perception exist in plant cells in addition to the amyloplast-based model of graviperception.
Amyloplast
Gravitropism
Columella
Root cap
Cite
Citations (4)
Root system architecture is influenced by gravity. How the root senses gravity and directs its orientation, so-called gravitropism, is not only a fundamental question in plant biology but also theoretically important for genetic improvement of crop root architecture. However, the mechanism has not been elucidated in most crops. We characterized a rice agravitropism allele, wavy root 1 (war1), a loss-of-function allele in OsPIN2, which encodes an auxin efflux transporter. With loss of OsPIN2 function, war1 leads to altered root system architecture including wavy root, larger root distribution angle, and shallower root system due to the loss of gravitropic perception in root tips. In the war1 mutant, polar auxin transport was disrupted in the root tip, leading to abnormal auxin levels and disturbed auxin transport and distribution in columella cells. Amyloplast sedimentation, an important process in gravitropic sensing, was also decreased in root tip columella cells. The results indicated that OsPIN2 controls gravitropism by finely regulating auxin transport, distribution and levels, and amyloplast sedimentation in root tips. We identified a novel role of OsPIN2 in regulating ABA biosynthesis and response pathways. Loss of OsPIN2 function in the war1 resulted in increased sensitivity to ABA in seed germination, increased ABA level, changes in ABA-associated genes in roots, and decreased drought tolerance in the seedlings. These results suggest that the auxin transporter OsPIN2 not only modulates auxin transport to control root gravitropism, but also functions in ABA signaling to affect seed germination and root development, probably by mediating crosstalk between auxin and ABA pathways.
Gravitropism
Amyloplast
Root cap
Polar auxin transport
Taproot
Lateral root
Root hair
Root system
Cite
Citations (17)
Primary roots of Zea mays seedlings germinated and grown in 0.1 mm chloramphenicol (CMP) were significantly less graviresponsive than primary roots of seedlings germinated and grown in distilled water. Elongation rates of roots treated with CMP were significantly greater than those grown in distilled water. Caps of control and CMP‐treated roots possessed extensive columella tissues comprised of cells containing numerous sedimented amyloplasts. These results indicate that the reduced graviresponsiveness of CMP‐treated roots is not due to reduced rates of elongation, the absence of the presumed gravireceptors (i.e., amyloplasts in columella cells), or reduced amounts of columella tissue. These results are consistent with CMP altering the production and/or transport of effectors that mediate gravitropism.
Amyloplast
Gravitropism
Columella
Elongation
Coleoptile
Distilled water
Root cap
Cite
Citations (1)
Abstract Ratiometric wide-field fluorescence microscopy with 1′,7′- bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran demonstrated that gravistimulation leads to rapid changes in cytoplasmic pH (pHc) in columella cells of Arabidopsis roots. The pHc of unstimulated columella cells in tiers 2 and 3, known sites of graviperception (E.B. Blancaflor, J.B. Fasano, S. Gilroy [1998] Plant Physiol 116: 213–222), was 7.22 ± 0.02 pH units. Following gravistimulation, the magnitude and direction of pHc changes in these cells depended on their location in the columella. Cells in the lower side of tier 2 became more alkaline by 0.4 unit within 55 s of gravistimulation, whereas alkalinization of the cells on the upper side was slower (100 s). In contrast, all cells in tier 3 acidified by 0.4 pH unit within 480 s after gravistimulation. Disrupting these pHc changes in the columella cells using pHc modifiers at concentrations that do not affect root growth altered the gravitropic response. Acidifying agents, including bafilomycin A1, enhanced curvature, whereas alkalinizing agents disrupted gravitropic bending. These results imply that pHc changes in the gravisensing cells and the resultant pH gradients across the root cap are important at an early stage in the signal cascade leading to the gravitropic response.
Gravitropism
Columella
Root cap
Amyloplast
Cite
Citations (141)
Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.
Amyloplast
Columella
Gravitropism
Root cap
Wild type
Endodermis
Cite
Citations (11)
Columella
Amyloplast
Gravitropism
Root cap
Cite
Citations (26)
Primary roots of Phaseolus vulgaris (Fabaceae) are positively geotropic, while lateral roots are not responsive to gravity In order to elucidate the structural basis for this differential georesponse, we have performed a qualitative and quantitative analysis of the ultrastructure of columella cells of primary and lateral roots of P. vulgaris. Root systems were fixed in situ so as not to disturb the ultrastructure of the columella cells. The columellas of primary roots are more extensive than those of lateral roots. The volumes of columella cells of primary roots are approximately twice those of columella cells of lateral roots. However, columella cells of primary roots contain greater absolute volumes and numbers of all cellular components examined than do columella cells of lateral roots. Also, the relative volumes of cellular components in columella cells of primary and lateral roots are statistically indistinguishable. The endoplasmic reticulum is sparse and distributed randomly in both types of columella cells. Both types of columella cells contain numerous sedimented amyloplasts, none of which contact the cell wall or form complexes with other cellular organelles. Therefore, positive geotropism by roots must be due to a factor(s) other than the presence of sedimented amyloplasts alone. Furthermore, it is unlikely that amyloplasts and plasmodesmata form a multi-valve system that controls the movement of growth regulating substances through the root cap.
Columella
Amyloplast
Gravitropism
Root cap
Plasmodesma
Cite
Citations (44)
Starch occupies 4.2 per cent of the volume of plastids in calyptrogen cells in primary roots of Zea mays L. cv. vp-7 wild type. Plastids in calyptrogen cells are distributed randomly around large, centrally located nuclei. The differentiation of calyptrogen cells into columella cells is characterized by cellular enlargement and the sedimentation of plastids to the bottom of the cells. Although sedimented plastids in columella cells do not contain significantly more starch than those in calyptrogen cells, primary roots are graviresponsive. The onset of root gravicurvature is not associated with a significant change in the distribution of plastids in columella cells. These results indicate that in this cultivar of Z. mays (1) the sedimentation of plastids in columella cells is not based upon their increased density resulting from increased starch content alone, (2) starch-laden amyloplasts need not be present in columella cells for roots to be graviresponsive, and (3) the onset of root gravicurvature does not require a major redistribution of plastids in columella cells.
Amyloplast
Columella
Gravitropism
Root cap
Cite
Citations (12)
Root-cap columella with movable amyloplasts may cause gravitropism of primary roots of Brassica rapa
Complete absence of amyloplasts in columella cells meant there was no gravitropic response in the primary roots of Brassica rapa; and abnormal development of amyloplasts reduced the response. These facts suggest that the amyloplasts need tomove freelyinthe cytoplasm as partof gravisensing. The seedlings were turned upside down and the columella cells with amyloplasts that aligned signicantly towards the gravity vector were mapped. It was found that movable amyloplasts are localized in young and central columella cells. It therefore appears that young and central columella cells generate the largest gravisensing signal.
Amyloplast
Columella
Gravitropism
Brassica rapa
Root cap
Cite
Citations (3)
Columella
Amyloplast
Gravitropism
Root cap
Plasmodesma
Cite
Citations (13)