logo
    Optimal preparation methods for automated matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry profiling of low molecular weight proteins and peptides
    27
    Citation
    34
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Mass spectrometry (MS) profiling of the proteome and peptidome for disease‐associated patterns is a new concept in clinical diagnostics. The technique, however, is highly sensitive to external sources of variation leading to potentially unacceptable numbers of false positive and false negative results. Before MS profiling can be confidently implemented in a medical setting, standard experimental methods must be developed that minimize technical variance. Past studies of variance have focused largely on pre‐analytical variation (i.e., sample collection, handling, etc.). Here, we examined how factors at the analytical stage including the matrix and solid‐phase extraction influence MS profiling. Firstly, a standard peptide/protein sample was measured automatically by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) MS across five consecutive days using two different preparation methods, dried droplet and sample/matrix, of four types of matrix: α ‐cyano‐4‐hydroxycinnamic acid (HCCA), sinapinic acid (SA), 2,5‐dihydroxybenzoic acid (DHB) and 2,5‐dihydroxyacetophenone (DHAP). The results indicated that the matrix preparation greatly influenced a number of key parameters of the spectra including repeatability (within‐day variability), reproducibility (inter‐day variability), resolution, signal strength, background intensity and detectability. Secondly, an investigation into the variance associated with C8 magnetic bead extraction of the standard sample prior to automated MS profiling demonstrated that the process did not adversely affect these same parameters. In fact, the spectra were generally more robust following extraction. Thirdly, the best performing matrix preparations were evaluated using C8 magnetic bead extracted human plasma. We conclude that the DHAP prepared according to the dried‐droplet method is the most appropriate matrix to use when performing automated MS profiling. Copyright © 2009 John Wiley & Sons, Ltd.
    Keywords:
    Sample Preparation
    Repeatability
    Surface-enhanced laser desorption/ionization
    Matrix (chemical analysis)
    Protein profiling of human serum by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is potentially a new diagnostic tool for early detection of human diseases, including cancer. Sample preparation is a key issue in MALDI MS and the analysis of complex samples such as serum requires optimized, reproducible methods for handling and deposition of protein samples. Data acquisition in MALDI MS is also a critical issue, since heterogeneity of sample deposits leads to attenuation of ion signals in MALDI MS. In order to improve the robustness and reproducibility of MALDI MS for serum protein profiling we investigated a range of sample preparation techniques and developed a statistical method based on repeated analyses for evaluation of protein-profiling performance of MALDI MS. Two different solid-phase extraction (SPE) methods were investigated, namely custom-made microcolumns and commercially available magnetic beads. Using these two methods, nineteen different sample preparation methods for serum profiling by MALDI MS were systematically tested with regard to matrix selection, stationary phase, selectivity, and reproducibility. Microcolumns were tested with regard to chromatographic properties; reversed phase (C8, C18, SDB-XC), ion-exchange (anion, weak cation, mixed-phase (SDB-RPS)) and magnetic beads were tested with regard to chromatographic properties; reversed phase (C8) or affinity chromatography (Cu-IMAC). The reproducibility of each sample preparation method was determined by enumeration and analysis of protein signals that were detected in at least six out of nine spectra obtained by three triplicate analyses of one serum sample.A candidate for best overall performance as evaluated by the number of peaks generated and the reproducibility of mass spectra was found among the tested methods. Up to 418 reproducible peaks were detected in one cancer serum sample. These protein peaks can be part of a possible diagnostic profile, suggesting that this sample preparation method and data acquisition approach is suitable for large-scale analysis of serum samples for protein profiling.
    Sample Preparation
    Surface-enhanced laser desorption/ionization
    Solid phase extraction
    Citations (35)
    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the aim of the experiment. Because the underlying principles of MALDI are still not fully known, a priori determination of optimal sample preparation protocols is often not possible.Employing an automated sample preparation quality assessment method recently presented by us we quantified the sample preparation quality obtained using various sample preparation protocols. Six conventional matrices with and without added potassium as a cationization agent and six ionic liquid matrices (ILMs) were assessed using poly(ethylene glycol) (PEG), polytetrahydrofuran (PTHF) and poly(methyl methacrylate) (PMMA) as samples. All sample preparation protocols were scored and ranked based on predefined quality parameters and spot-to-spot repeatability.Clearly distinctive preferences were observed in matrix identity and cationization agent for PEG, PTHF and PMMA, as the addition of an excess of potassium cationization agent results in an increased score for PMMA and a contrasting matrix-dependent effect for PTHF and PEG. The addition of excess cationization agent to sample mixtures dissipates any overrepresentation of high molecular weight polymer species. Our results show reduced ionization efficiency and similar sample deposit homogeneity for all tested ILMs, compared with well-performing conventional MALDI matrices.The results published here represent a start in the unsupervised quantification of sample preparation quality for MALDI samples. This method can select the best sample preparation parameters for any synthetic polymer sample and the results can be used to formulate hypotheses on MALDI principles. Copyright © 2016 John Wiley & Sons, Ltd.
    Sample Preparation
    Matrix (chemical analysis)
    Sample (material)
    Repeatability
    MALDI imaging
    Citations (7)
    Glycosylation is a common post-translational modification that can add complexity to the proteome of many cell types. We used enzymatic and chemical methods of deglycosylation to treat a heavily glycosylated exoproteome sample from the filamentous fungus Trichoderma reesei. Deglycosylated samples were resolved on one-dimensional (1-D) and two-dimensional (2-D) gels in order to determine the effect of deglycosylation on the electrophoresis patterns and on the ability to identify proteins by peptide mass matching using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of in-gel tryptic digests. We found that deglycosylation of the protein sample resulted in different protein patterns on 1-D and 2-D gels, reduced the complexity of gel patterns, and enhanced the protein identification of some proteins via MALDI-TOF-MS. Deglycosylation with trifluoromethanesulfonic acid (TFMS) was found to be more effective than enzymatic treatments. These deglycosylation techniques may be employed in whole proteome analysis to locate glycosylated proteins and assist in their identification by MS.
    Proteome
    Peptide mass fingerprinting
    Sample Preparation
    Surface-enhanced laser desorption/ionization
    Abstract Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) provides a fast and easy means to identify culturable microorganisms to the species level. The sample preparation of microbial colonies for MALDI‐TOF analysis requires a suitable protein extraction method. While standard MALDI‐TOF sample preparation methods are well suited for the identification of and the discrimination between microorganisms belonging to different species, they are not disruptive enough to allow the discrimination between different strains of the same microorganism. More disruptive protein extraction methods lead to better discrimination power because they allow a better breakdown of bacterial cell membrane and a more efficient extraction of conserved microbial proteins that are specific to each species and strain. Here we describe how to extract proteins from single microbial colonies using formic acid and acetonitrile to disrupt cells prior to placing them on a target plate for MALDI‐TOF MS analysis. Contrary to other sample preparation methods for MALDI‐TOF MS, this approach allows the discrimination between different strains of microorganisms of the same species. Our approach also provides the groundwork data for building algorithms that allow the detection of specific microbial strains of interest, with a great potential for diagnostic applications in clinical settings. © 2021 Wiley Periodicals LLC. Basic Protocol : Protein extraction and MALDI‐TOF bio‐typing of phenotypically distinct bacterial species
    Sample Preparation
    Citations (3)
    Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) is an essential analytical technique for the molecular characterization of biomolecules and synthetic polymers. Its ability to provide comprehensive compositional information not afforded by other techniques, with high sensitivity and selectivity, is highly influenced by the sample preparation of the material prior to analysis. This review discusses MALDI-MS sample preparation protocols that do not utilize solvents. Such methods provide alternative routes for analyzing insoluble polymeric materials and may also reveal information that is not attainable with solvent-based sample preparation techniques. Additionally, this review will present relevant surface analysis and imaging results only achievable with solvent-free sample preparation methodologies.
    Sample Preparation
    Biomolecule
    MALDI imaging
    Matrix (chemical analysis)
    Surface-enhanced laser desorption/ionization
    Desorption electrospray ionization
    Characterization
    Sample Preparation
    Matrix (chemical analysis)
    MALDI imaging
    Surface-enhanced laser desorption/ionization
    Citations (3)
    Matrix-assisted laser desorption/ionization (MALDI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses are compared to gain insight into some of the details of sample preparation for MALDI analysis of synthetic polymers. ToF-SIMS imaging of MALDI samples shows segregation of the cationization agent from the matrix crystals. The amount of observed segregation can be controlled by the sample preparation technique. Electrospray sample deposition minimizes segregation. Comparing ToF-SIMS and MALDI mass spectra from the same samples confirms that ToF-SIMS is significantly more surface sensitive than MALDI. This comparison shows that segregation of the oligomers of a polymer sample can occur during MALDI sample preparation. Our data indicate that MALDI is not as sensitive to those species dominating the sample surface as to species better incorporated into the matrix crystals. Finally, we show that matrix-enhanced SIMS can be an effective tool to analyze synthetic polymers, although the sample preparation conditions may be different than those optimized for MALDI.
    MALDI imaging
    Sample Preparation
    Matrix (chemical analysis)
    Surface-enhanced laser desorption/ionization