Facultative and obligate slavery in formicine ants: frequency of slavery, and proportion and size of slaves
25
Citation
39
Reference
10
Related Paper
Citation Trend
Abstract:
Slave-making ants raid nests of other ant species, capture the developing offspring and rear them to slave workers. Here we compare slave-making of three formicine slave-making ants: the facultative Formica subnuda, the obligate Polyergus breviceps, and F. subintegra which previously has been considered facultative but appears to be an obligate slave-making ant. If F. subintegra is an obligate slavemaker, slave-making of F. subintegra should differ from that of F. subnuda but closely resemble slave-making of P. breviceps in the following aspects: (1) Obligate slavemakers are rarer than facultative slavemakers. (2) Slaveless colonies of facultative slavemakers are found, but obligate slavemakers always have slaves. (3) Because obligate slavemakers depend on their slaves, they should have a higher proportion of slaves than facultative slavemakers. (4) Owing to special adaptations obligate slavemakers are able to raid bigger colonies, and hence have bigger slaves than facultative slavemakers. (5) Dufour's gland of F. subintegra should be larger than that of F. subnuda. Per 100 free F. podzolica colonies, the number of P. breviceps and F. subintegra colonies with F. podzolica slaves were 1.3% and 3.9%, respectively, and the number of F. subnuda colonies with F. podzolica 3.7%, and without F. podzolica 7.5%. The proportion of slaves, when present, varied between 1–30% in the colonies of F. subnuda, and between 70–90% in the colonies of the other species. The slaves of F. subnuda were significantly smaller than those of F. subintegra and P. breviceps. The length of F. subnuda's Dufour's gland was one third of the length of F. subintegra's gland. The results show that slave-making of F. subintegra parallels that of P. breviceps, and contrary to the earlier notion, F. subintegra is an obligate slave-making ant. We suggest that F. subnuda and F. subintegra represent extreme modes of slave-making behaviour in the Formica sanguinea group.Keywords:
Facultative
Obligate
Obligate anaerobe
Abstract The diversity and ecological variety of Holometabola foregrounds a wide array of dynamic symbiotic relationships with gut-dwelling bacteria. A review of the literature highlights that holometabolous insects rely on both obligate bacteria and facultative bacteria living in their guts to satisfy a number of physiological needs. The driving forces behind these differing relationships can be hypothesized through the scrutiny of bacterial associations with host gut morphology, and transmission of bacteria within a given host taxon. Our knowledge of the evolution of facultative or obligate symbiotic bacteria in holometabolan systems is further enhanced by an assessment of the various services the bacteria provide, including nutrition, immune system health, and development. The diversity of Holometabola can thus be examined through an assessment of known bacterial partnerships within the orders of Holometabola.
Obligate
Facultative
Obligate anaerobe
Intracellular parasite
Commensalism
Symbiotic bacteria
Cite
Citations (39)
[Modification of the Hungate vessel for cultivation of facultative and obligate anaerobic bacteria].
Modified Hungate vessel made of native penicillinum bottles and chemical vessels has been created and experimentally studied. The vessels can be used for cultivation of facultative and obligate anaerobe microorganisms on liquid and solid nutrient media. Locking devices of the vessel are described.
Facultative
Obligate
Obligate anaerobe
Cite
Citations (0)
Obligate anaerobe
Facultative
Obligate
Cite
Citations (0)
Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The role and distribution of facultative endosymbionts and their evolutionary significance as seeds of obligate symbioses are much less understood. Here, using phylogenetic approaches, we focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate symbioses within this bloodsucking group. In particular, we demonstrate a new potentially obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to Sodalis, Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial diversity of Wolbachia strains detected in Hippoboscidae samples falling into three supergroups: A, B, and the most common F. Altogether, our results prove the associations between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus and Sodalis, suggesting that the host is either highly selective about its future obligate symbionts or that these two lineages are the most competitive when establishing symbioses in louse flies.
Obligate
Facultative
Obligate anaerobe
Lineage (genetic)
Cite
Citations (0)
One hundred and fifteen cultures, including obligate, restricted facultative and facultative methylotrophs and members of possibly related taxa, were tested for 135 characters based on morphology, physiology and biochemistry and the results were subjected to computer analysis. The polar lipid composition of all the strains was examined. The isoprenoid quinone composition and the mol% G + C value of the DNA were determined for all the obligate and restricted facultative bacteria, and also for some of the other strains representative of the clusters formed in the numerical taxonomic study. The results indicate that the obligate methanol-utilizing bacteria all exhibit a high phenotypic similarity and are taxonomically distinct from the restricted facultative and the facultative methanol-utilizing bacteria examined and from the pseudomonad reference strains. The results also indicate that the obligate methylotrophs and the restricted facultative methylotrophs represent two distinct taxa of generic status: Methylobacillus and a taxon which can be equated with the organisms currently referred to as 'Methylophilus'.
Facultative
Obligate
Obligate anaerobe
Cite
Citations (31)
The obligate psychrophilic yeasts Torulopsis psychrophila, T. austromarina, Leucosporidium frigidum, L. gelidum, and L. nivalis were obligate aerobes and were unable to grow anaerobically. In contrast, the obligate thermophilic yeasts T. bovina, T. pintolopesii, Candida slooffii, and Saccharomyces telluris were facultative anaerobes.
Obligate
Psychrophile
Facultative
Obligate anaerobe
Extremophile
Cite
Citations (21)
Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The role and distribution of facultative endosymbionts and their evolutionary significance as seeds of obligate symbioses are much less understood. Here, using phylogenetic approaches, we focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate symbioses within this bloodsucking group. In particular, we demonstrate a new potentially obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to Sodalis, Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial diversity of Wolbachia strains detected in Hippoboscidae samples falling into three supergroups: A, B, and the most common F. Altogether, our results prove the associations between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus and Sodalis, suggesting that the host is either highly selective about its future obligate symbionts or that these two lineages are the most competitive when establishing symbioses in louse flies.
Obligate
Facultative
Obligate anaerobe
Lineage (genetic)
Cite
Citations (0)
Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The role and distribution of facultative endosymbionts and their evolutionary significance as seeds of obligate symbioses are much less understood. Here, using phylogenetic approaches, we focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate symbioses within this bloodsucking group. In particular, we demonstrate a new potentially obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to Sodalis, Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial diversity of Wolbachia strains detected in Hippoboscidae samples falling into three supergroups: A, B, and the most common F. Altogether, our results prove the associations between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus and Sodalis, suggesting that the host is either highly selective about its future obligate symbionts or that these two lineages are the most competitive when establishing symbioses in louse flies.
Obligate
Facultative
Obligate anaerobe
Lineage (genetic)
Cite
Citations (0)
Abstract Extract Overseas, obligate anaerobes are often isolated from mastitis cases, either in pure culture or in association with aerobic or facultative anaerobic organismsCitation (1) Citation (2) . In New Zealand, however, the role of anaerobic bacteria in cases of mastitis has not been defined.
Obligate anaerobe
Obligate
Facultative
Cite
Citations (0)
Obligate anaerobe
Obligate
Facultative
Cite
Citations (9)