logo
    An antagonistic vascular endothelial growth factor (VEGF) variant inhibits VEGF-stimulated receptor autophosphorylation and proliferation of human endothelial cells
    77
    Citation
    37
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.
    Keywords:
    S1PR1
    Systemic vascular endothelial growth factor inhibition, in combination with chemotherapy, improves the outcome of patients with metastatic cancer. Peripheral sensory neuropathies occurring in patients receiving both drugs are attributed to the chemotherapy. Here, we provide unprecedented evidence that vascular endothelial growth factor receptor inhibitors trigger a painful neuropathy and aggravate paclitaxel-induced neuropathies in mice. By using transgenic mice with altered neuronal vascular endothelial growth factor receptor expression, systemic inhibition of vascular endothelial growth factor receptors was shown to interfere with the endogenous neuroprotective activities of vascular endothelial growth factor on sensory neurons. In vitro, vascular endothelial growth factor prevented primary dorsal root ganglion cultures from paclitaxel-induced neuronal stress and cell death by counteracting mitochondrial membrane potential decreases and normalizing hyperacetylation of α-tubulin. In contrast, vascular endothelial growth factor receptor inhibitors exerted opposite effects. Intriguingly, vascular endothelial growth factor or vascular endothelial growth factor receptor inhibitors exerted their effects through a mechanism whereby Hdac6, through Hsp90, controls vascular endothelial growth factor receptor-2-mediated expression of the anti-apoptotic Bcl2. Our observations that systemic anti-vascular endothelial growth factor therapies interfere with the neuroprotective activities of vascular endothelial growth factor may have important implications for the application of anti-vascular endothelial growth factor therapies in cancer patients.
    Citations (55)
    Reduced tissue oxygen tension (hypoxia) is appreciated as an efficient stimulus for neovascularization. The effect of hypoxia on the very first stages of vascular development is, however, less well characterized. Here we show that hypoxic conditions (1% O2) potently stimulated formation of an extensive vascular network during a discrete stage of mouse embryonal stem cell differentiation. The morphological changes correlated with an expanding pool of endothelial cells and with activation of the vascular endothelial growth factor-d (Vegf-d) and Vegf receptor-3 genes. VEGF receptor-3 expression was confined to vascular endothelial cells and analysis of the lymphatic marker Prox-1 revealed no expansion of lymphatic endothelial cells. Administration of neutralizing antibodies against either VEGF receptor-3 or VEGF receptor-2 impaired vascular network formation, whereas neutralizing antibodies against VEGF receptor-1 potentiated development of immature vascular structures. In addition, sequestering of VEGF receptor-3 ligands reduced vascularization in a manner similar to neutralization of VEGF receptor-3. We conclude that hypoxia-driven vascular development requires the activity of VEGF receptor-3.
    S1PR1
    Hypoxia
    Lymphatic Endothelium
    Oxygen tension
    Citations (43)
    Although the importance of the vascular endothelial growth factor (VEGF)/VEGF tyrosine kinase receptor (VEGFR) system in angiogenesis is well established, very little is known about the regulation of VEGFR expression in vascular endothelial cells. We have cloned partial cDNAs encoding bovine VEGFR-1 (flt) and -2 (flk-1) and used them to study VEGFR expression by bovine microvascular- and large vessel-derived endothelial cells. Both cell lines express flk-1, but not flt. Transforming growth factor β1 (TGF-β1) reduced the high affinity 125I-VEGF binding capacity of both cell types in a dose-dependent manner, with a 2.0-2.7-fold decrease at 1-10 ng/ml. Cross-linking experiments revealed a decrease in 125I-VEGF binding to a cell surface monomeric protein corresponding to Flk-1 on the basis of its affinity for VEGF, molecular mass (185-190 kDa), and apparent internalization after VEGF binding. Immunoprecipitation and Western blot experiments demonstrated a decrease in Flk-1 protein expression, and TGF-β1 reduced flk-1 mRNA levels in a dose-dependent manner. These results imply that TGF-β1 is a major regulator of the VEGF/Flk-1 signal transduction pathway in endothelial cells. Although the importance of the vascular endothelial growth factor (VEGF)/VEGF tyrosine kinase receptor (VEGFR) system in angiogenesis is well established, very little is known about the regulation of VEGFR expression in vascular endothelial cells. We have cloned partial cDNAs encoding bovine VEGFR-1 (flt) and -2 (flk-1) and used them to study VEGFR expression by bovine microvascular- and large vessel-derived endothelial cells. Both cell lines express flk-1, but not flt. Transforming growth factor β1 (TGF-β1) reduced the high affinity 125I-VEGF binding capacity of both cell types in a dose-dependent manner, with a 2.0-2.7-fold decrease at 1-10 ng/ml. Cross-linking experiments revealed a decrease in 125I-VEGF binding to a cell surface monomeric protein corresponding to Flk-1 on the basis of its affinity for VEGF, molecular mass (185-190 kDa), and apparent internalization after VEGF binding. Immunoprecipitation and Western blot experiments demonstrated a decrease in Flk-1 protein expression, and TGF-β1 reduced flk-1 mRNA levels in a dose-dependent manner. These results imply that TGF-β1 is a major regulator of the VEGF/Flk-1 signal transduction pathway in endothelial cells.
    Citations (164)
    Vascular endothelial growth factor (VEGF) plays a central role in tumor angiogenesis. It stimulates endothelial cell proliferation and vessel hyperpermeability, promotes cell migration, and inhibits apoptosis. All these actions of VEGF are mediated by receptor tyrosine kinase, vascular endothelial growth factor receptor (VEGFR). Selective targeting VEGFR signal transduction pathway may be proved to be useful in developing tumor angiogensis inhibitors.
    Citations (1)
    Vascular endothelial growth factor (VEGF) plays a central role in tumor angiogenesis. It stimulates endothelial cell proliferation and vessel hyperpermeability, promotes cell migration, and inhibits apoptosis. All these actions of VEGF are mediated by receptor tyrosine kinase, vascular endothelial growth factor receptor (VEGFR). Selective targeting VEGFR signal transduction pathway may be proved to be useful in developing tumor angiogensis inhibitors.
    S1PR1
    Citations (0)
    Abstract Vascular endothelial growth factor (VEGF) is a newly identified growth and permeability factor with a unique specificity for endothelial cells. Recently the flt‐encoded tyrosine kinase was characterized as a receptor for VEGF. A novel tyrosine kinase receptor encoded by the KDR gene was also found to bind VEGF with high affinity when expressed in CMT‐3 cells. Screening for flt and KDR expression in a variety of species and tissue‐derived endothelial cells demonstrates that flt is predominantly expressed in human placenta and human vascular endothelial cells. Placenta growth factor (PIGF), a growth factor significantly related to VEGF, is coexpressed with flt in placenta and human vascular endothelial cells. KDR is more widely distributed and expressed in all vessel‐derived endothelial cells. These data demonstrate that cultured human endothelial cells isolated from different tissues express both VEGF receptors in relative high levels and, additionally, that all investigated nonhuman endothelial cells in culture are also positive for KDR gene expression.
    S1PR1
    Citations (144)