Two checkpoint complexes are independently recruited to sites of DNA damage in vivo
387
Citation
36
Reference
10
Related Paper
Citation Trend
Abstract:
The Ddc1/Rad17/Mec3 complex and Rad24 are DNA damage checkpoint components with limited homology to replication factors PCNA and RF-C, respectively, suggesting that these factors promote checkpoint activation by “sensing” DNA damage directly. Mec1 kinase, however, phosphorylates the checkpoint protein Ddc2 in response to damage in the absence of all other known checkpoint proteins, suggesting instead that Mec1 and/or Ddc2 may act as the initial sensors of DNA damage. In this paper, we show that Ddc1 or Ddc2 fused to GFP localizes to a single subnuclear focus following an endonucleolytic break. Other forms of damage result in a greater number of Ddc1–GFP or Ddc2–GFP foci, in correlation with the number of damage sites generated, indicating that Ddc1 and Ddc2 are both recruited to sites of DNA damage. Interestingly, Ddc2 localization is severely abrogated in mec1 cells but requires no other known checkpoint genes, whereas Ddc1 localization requires Rad17, Mec3, and Rad24, but not Mec1. Therefore, Ddc1 and Ddc2 recognize DNA damage by independent mechanisms. These data support a model in which assembly of multiple checkpoint complexes at DNA damage sites stimulates checkpoint activation. Further, we show that although Ddc1 remains strongly localized following checkpoint adaptation, many nuclei contain only dim foci of Ddc2–GFP, suggesting that Ddc2 localization may be down-regulated during resumption of cell division. Lastly, visualization of checkpoint proteins localized to damage sites serves as a useful tool for analysis of DNA damage in living cells.Keywords:
CHEK1
Checkpoint Kinase 2
DNA-PKcs
DNA damage checkpoint response is initiated to arrest cell cycle progression so that DNA repair can take place and, thereby, prevents accumulation and propagation of DNA damage. In checkpoint response, Chk1 and Chk2 have major roles, primarily in arresting cells in S and G2 phase of the cell cycle. However, Chk1 appears to be the more critical player, with Chk2 playing an accessory role. Since S and G2 arrest are pro-survival events, a major effort has been devoted to the development of Chk1 inhibitors, some of which have entered clinical trials as chemo- and radio-sensitizers. On the other hand, Chk2 potentiates p53-dependent apoptosis, and inhibitors targeting this kinase may afford protection against normal tissue injury during cancer therapy.
CHEK1
Checkpoint Kinase 2
Cite
Citations (1)
DNA damage checkpoint response is initiated to arrest cell cycle progression so that DNA repair can take place and, thereby, prevents accumulation and propagation of DNA damage. In checkpoint response, Chk1 and Chk2 have major roles, primarily in arresting cells in S and G2 phase of the cell cycle. However, Chk1 appears to be the more critical player, with Chk2 playing an acces- sory role. Since S and G2 arrest are pro-survival events, a major effort has been devoted to the devel- opment of Chk1 inhibitors, some of which have en- tered clinical trials as chemo- and radio-sensitizers. On the other hand, Chk2 potentiates p53-dependent apoptosis, and inhibitors targeting this kinase may afford protection against normal tissue injury during cancer therapy.
CHEK1
Checkpoint Kinase 2
Cite
Citations (0)
CHEK1
Checkpoint Kinase 2
DNA re-replication
Cite
Citations (149)
CHEK1
DNA-PKcs
Checkpoint Kinase 2
Schizosaccharomyces
Cite
Citations (465)
ABSTRACT Recent work on the mechanisms of DNA damage and replication cell cycle checkpoints has revealed great similarity between the checkpoint pathways of organisms as diverse as yeasts, flies and humans. However, there are differences in the ways these organisms regulate their cell cycles. To connect the conserved checkpoint pathways with various cell cycle targets requires an adaptable link that can target different cell cycle components in different organisms. The Chk1 and Cds1 protein kinases, downstream effectors in the checkpoint pathways, seem to play just such roles. Perhaps more surprisingly, the two kinases not only have different targets in different organisms but also seem to respond to different signals in different organisms. So, whereas in fission yeast Chk1 is required for the DNA damage checkpoint and Cds1 is specifically involved in the replication checkpoint, their roles seem to be shuffled in metazoans.
CHEK1
Checkpoint Kinase 2
DNA re-replication
Cite
Citations (222)
DNA damage checkpoints arrest cell cycle progression to facilitate DNA repair. The ability to survive genotoxic insults depends not only on the initiation of cell cycle checkpoints but also on checkpoint maintenance. While activation of DNA damage checkpoints has been studied extensively, molecular mechanisms involved in sustaining and ultimately inactivating cell cycle checkpoints are largely unknown. Here, we explored feedback mechanisms that control the maintenance and termination of checkpoint function by computationally identifying an evolutionary conserved mitotic phosphorylation network within the DNA damage response. We demonstrate that the non-enzymatic checkpoint adaptor protein 53BP1 is an in vivo target of the cell cycle kinases Cyclin-dependent kinase-1 and Polo-like kinase-1 (Plk1). We show that Plk1 binds 53BP1 during mitosis and that this interaction is required for proper inactivation of the DNA damage checkpoint. 53BP1 mutants that are unable to bind Plk1 fail to restart the cell cycle after ionizing radiation-mediated cell cycle arrest. Importantly, we show that Plk1 also phosphorylates the 53BP1-binding checkpoint kinase Chk2 to inactivate its FHA domain and inhibit its kinase activity in mammalian cells. Thus, a mitotic kinase-mediated negative feedback loop regulates the ATM-Chk2 branch of the DNA damage signaling network by phosphorylating conserved sites in 53BP1 and Chk2 to inactivate checkpoint signaling and control checkpoint duration.
Checkpoint Kinase 2
CHEK1
PLK1
Polo-like kinase
Cite
Citations (222)
CHEK1
Checkpoint Kinase 2
Cyclin B1
Wee1
Cite
Citations (54)
The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a regulator of DNA damage checkpoint recovery. Here we report that in budding yeast, deletion of the IRA1 and IRA2 genes encoding negative regulators of Ras prevents cellular recovery from a DNA damage induced arrest. The checkpoint kinase Rad53 is dephosphorylated in an IRA-deficient strain, indicating that recovery failure is not caused by constitutive checkpoint pathway activation. The ira1D ira2D recovery defect requires the checkpoint kinase Chk1 and the cAMP-dependent protein kinase (PKA) catalytic subunit Tpk2. Furthermore, PKA phosphorylation sites on the anaphase promoting complex specificity factor Cdc20 are required for the recovery defect, indicating a link between the recovery defect and PKA regulation of mitosis. This work identifies a new signaling pathway that can regulate DNA damage checkpoint recovery, and implicates the Ras signaling pathway as an important regulator of mitotic events.
CHEK1
Checkpoint Kinase 2
Anaphase-promoting complex
DNA-PKcs
Cite
Citations (10)
The G2 DNA damage checkpoint prevents mitotic entry in the presence of damaged DNA, and thus is essential for cells to replicate with stable genetic inheritance. Whilst significant progress has been made in the past 10 years on the mechanism of checkpoint activation, little attention has been paid to how the DNA damage checkpoint is switched off to allow cell cycle re-entry. Insight into the mechanism of cell cycle re-entry was recently provided by our finding that the Schizosaccharomyces pombe type 1 phosphatase (PP1) Dis2 dephosphorylates the checkpoint effector kinase Chk1. This occurs on a site phosphorylated by the ATR homologue Rad3 in response to DNA damage, and results in Chk1 inactivation and checkpoint release. Here we discuss the implications of this finding on DNA damage checkpoint signaling, and speculate on models for checkpoint maintenance and release.
CHEK1
Checkpoint Kinase 2
Spindle checkpoint
Cite
Citations (25)
AbstractNek6 is a recently identified NIMA-related kinase that is required for mitotic cell cycle progression. In the present study, we examined the role of Nek6 in the DNA damage response. We found that Nek6 is phosphorylated upon IR and UV irradiation through the DNA damage checkpoint in vivo. Nek6 is also directly phosphorylated by the checkpoint kinases Chk1 and Chk2 in vitro. Notably, Nek6 activation during mitosis is completely abolished by IR and UV irradiation. Moreover, the ectopic expression of Nek6 overrides DNA damage-induced G2/M arrest. These results suggest that Nek6 is a novel target of the DNA damage checkpoint and that the inhibition of Nek6 activity is required for proper cell cycle arrest in the G2/M phase upon DNA damage.
CHEK1
Checkpoint Kinase 2
Cite
Citations (62)