logo
    Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
    4,736
    Citation
    0
    Reference
    20
    Related Paper
    Citation Trend
    Abstract:
    Included in Prentice Hall's MATLAB Curriculum Series, this text provides a comprehensive treatment of the methodologies underlying neuro-fuzzy and soft computing. The book places equal emphasis on theoretical aspects of covered methodologies, empirical observations, and verifications of various applications in practice.
    Keywords:
    Soft Computing
    Fuzzy inference system
    Inference system
    Citations (1,922)
    Course (navigation)
    Citations (3,216)
    From the Publisher: This book brings together - in an informal and tutorial fashion - the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields. Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs. No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required.
    Citations (49,799)
    We present an efficient method for estimating cluster centers of numerical data. This method can be used to determine the number of clusters and their initial values for initializing iterative optimization-based clustering algorithms such as fuzzy C-
    Identification
    Citations (2,796)
    From the Publisher: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modelling probability density functions and the properties and merits of the multi-layer perceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100 exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.
    Citations (19,304)
    Fundamental and advanced developments in neuro-fuzzy synergisms for modeling and control are reviewed. The essential part of neuro-fuzzy synergisms comes from a common framework called adaptive networks, which unifies both neural networks and fuzzy models. The fuzzy models under the framework of adaptive networks is called adaptive-network-based fuzzy inference system (ANFIS), which possess certain advantages over neural networks. We introduce the design methods for ANFIS in both modeling and control applications. Current problems and future directions for neuro-fuzzy approaches are also addressed.< >
    Citations (2,324)
    About the Author. Preface to the Third Edition. 1 Introduction. The Case for Imprecision. A Historical Perspective. The Utility of Fuzzy Systems. Limitations of Fuzzy Systems. The Illusion: Ignoring Uncertainty and Accuracy. Uncertainty and Information. The Unknown. Fuzzy Sets and Membership. Chance Versus Fuzziness. Sets as Points in Hypercubes. Summary. References. Problems. 2 Classical Sets and Fuzzy Sets. Classical Sets. Operations on Classical Sets. Properties of Classical (Crisp) Sets. Mapping of Classical Sets to Functions. Fuzzy Sets. Fuzzy Set Operations. Properties of Fuzzy Sets. Alternative Fuzzy Set Operations. Summary. References. Problems. 3 Classical Relations and Fuzzy Relations. Cartesian Product. Crisp Relations. Cardinality of Crisp Relations. Operations on Crisp Relations. Properties of Crisp Relations. Composition. Fuzzy Relations. Cardinality of Fuzzy Relations. Operations on Fuzzy Relations. Properties of Fuzzy Relations. Fuzzy Cartesian Product and Composition. Tolerance and Equivalence Relations. Crisp Equivalence Relation. Crisp Tolerance Relation. Fuzzy Tolerance and Equivalence Relations. Value Assignments. Cosine Amplitude. Max Min Method. Other Similarity Methods. Other Forms of the Composition Operation. Summary. References. Problems. 4 Properties of Membership Functions, Fuzzification, and Defuzzification. Features of the Membership Function. Various Forms. Fuzzification. Defuzzification to Crisp Sets. -Cuts for Fuzzy Relations. Defuzzification to Scalars. Summary. References. Problems. 5 Logic and Fuzzy Systems. Part I Logic. Classical Logic. Proof. Fuzzy Logic. Approximate Reasoning. Other Forms of the Implication Operation. Part II Fuzzy Systems. Natural Language. Linguistic Hedges. Fuzzy (Rule-Based) Systems. Graphical Techniques of Inference. Summary. References. Problems. 6 Development of Membership Functions. Membership Value Assignments. Intuition. Inference. Rank Ordering. Neural Networks. Genetic Algorithms. Inductive Reasoning. Summary. References. Problems. 7 Automated Methods for Fuzzy Systems. Definitions. Batch Least Squares Algorithm. Recursive Least Squares Algorithm. Gradient Method. Clustering Method. Learning From Examples. Modified Learning From Examples. Summary. References. Problems. 8 Fuzzy Systems Simulation. Fuzzy Relational Equations. Nonlinear Simulation Using Fuzzy Systems. Fuzzy Associative Memories (FAMS). Summary. References. Problems. 9 Decision Making with Fuzzy Information. Fuzzy Synthetic Evaluation. Fuzzy Ordering. Nontransitive Ranking. Preference and Consensus. Multiobjective Decision Making. Fuzzy Bayesian Decision Method. Decision Making Under Fuzzy States and Fuzzy Actions. Summary. References. Problems. 10 Fuzzy Classification. Classification by Equivalence Relations. Crisp Relations. Fuzzy Relations. Cluster Analysis. Cluster Validity. c-Means Clustering. Hard c-Means (HCM). Fuzzy c-Means (FCM). Fuzzy c-Means Algorithm. Classification Metric. Hardening the Fuzzy c-Partition. Similarity Relations from Clustering. Summary. References. Problems. 11 Fuzzy Pattern Recognition. Feature Analysis. Partitions of the Feature Space. Single-Sample Identification. Multifeature Pattern Recognition. Image Processing. Summary. References. Problems. 12 Fuzzy Arithmetic and the Extension Principle. Extension Principle. Crisp Functions, Mapping, and Relations. Functions of Fuzzy Sets Extension Principle. Fuzzy Transform (Mapping). Practical Considerations. Fuzzy Arithmetic. Interval Analysis in Arithmetic. Approximate Methods of Extension. Vertex Method. DSW Algorithm. Restricted DSW Algorithm. Comparisons. Summary. References. Problems. 13 Fuzzy Control Systems. Control System Design Problem. Control (Decision) Surface. Assumptions in a Fuzzy Control System Design. Simple Fuzzy Logic Controllers. Examples of Fuzzy Control System Design. Aircraft Landing Control Problem. Fuzzy Engineering Process Control. Classical Feedback Control. Fuzzy Control. Fuzzy Statistical Process Control. Measurement Data Traditional SPC. Attribute Data Traditional SPC. Industrial Applications. Summary. References. Problems. 14 Miscellaneous Topics. Fuzzy Optimization. One-Dimensional Optimization. Fuzzy Cognitive Mapping. Concept Variables and Causal Relations. Fuzzy Cognitive Maps. Agent-Based Models. Summary. References. Problems. 15 Monotone Measures: Belief, Plausibility, Probability, and Possibility. Monotone Measures. Belief and Plausibility. Evidence Theory. Probability Measures. Possibility and Necessity Measures. Possibility Distributions as Fuzzy Sets. Possibility Distributions Derived from Empirical Intervals. Deriving Possibility Distributions from Overlapping Intervals. Redistributing Weight from Nonconsonant to Consonant Intervals. Comparison of Possibility Theory and Probability Theory. Summary. References. Problems. Index.
    Defuzzification
    Fuzzy Mathematics
    Fuzzy associative matrix
    Citations (4,787)