logo
    Potato virus X and Tobacco mosaic virus-based vectors compatible with the Gateway™ cloning system
    28
    Citation
    32
    Reference
    10
    Related Paper
    Citation Trend
    MicroRNAs (miRNAs) play essential roles in plant development. There is increasing evidence that changed expression of miRNAs in virus-infected plants contributes to the development of viral symptoms. Here, we analysed the altered expression of miRNAs of Nicotiana benthamiana in response to Potato virus X (PVX) by Illumina Solexa sequencing. One of the 21 miRNAs significantly affected, nbe-miR166h-p5, was closely associated with viral symptoms. Using the Tobacco rattle virus-based miRNA suppression (VbMS) system, we found that the suppression of nbe-miR166h-p5 in plants caused leaves to turn dark green with increased chlorophyll. When PVX was inoculated on nbe-miR166h-p5-suppressed plants, the leaf yellowing symptom of PVX was largely attenuated with less reduction in chlorophyll content, and the accumulation of PVX was decreased. nbe-miR166h-p5 was also up-regulated in plants infected by Turnip mosaic virus (TuMV), and its suppression attenuated the leaf yellowing symptom of TuMV and decreased viral accumulation. Three potential targets of nbe-miR166h-p5 were identified. The results indicate the association of nbe-miR166h-p5 with symptoms of PVX and also with those of TuMV, providing useful information on the relationship between miRNA and viral infection.
    Potato virus X
    Potexvirus
    Turnip mosaic virus
    Tobacco rattle virus
    Citations (19)
    Plant viruses move systemically from one leaf to another via phloem. However, the viral functions needed for systemic movement are not fully elucidated. An experimental system was designed to study the effects of low temperature on the vascular transport of the tobacco mosaic tobamovirus (TMV). Vascular transport of TMV from lower inoculated leaves to upper non-inoculated leaves via a stem segment kept at low temperature (4 degrees C) was not affected. On the other hand, several experiments were performed on tobacco leaves to demonstrate that virus replication did not occur at the same temperature. The data suggest that replication of TMV in the phloem of wild-type tobacco plants is not necessary for the vascular transport of TMV, and that the virus moves with photoassimilates as suggested previously.
    Tobamovirus
    Plasmodesma
    Vascular tissue
    Mosaic virus
    Reversibly glycosylated polypeptides (RGPs) have been identified in many plant species and play an important role in cell wall formation, intercellular transport regulation, and plant–virus interactions. Most plants have several RGP genes with different expression patterns depending on the organ and developmental stage. Here, we report on four members of the RGP family in N. benthamiana. Based on a homology search, NbRGP1-3 and NbRGP5 were assigned to the class 1 and class 2 RGPs, respectively. We demonstrated that NbRGP1–3 and 5 mRNA accumulation increases significantly in response to tobacco mosaic virus (TMV) infection. Moreover, all identified class 1 NbRGPs (as distinct from NbRGP5) suppress TMV intercellular transport and replication in N. benthamiana. Elevated expression of NbRGP1–2 led to the stimulation of callose deposition at plasmodesmata, indicating that RGP-mediated TMV local spread could be affected via a callose-dependent mechanism. It was also demonstrated that NbRGP1 interacts with TMV movement protein (MP) in vitro and in vivo. Therefore, class 1 NbRGP1–2 play an antiviral role by impeding intercellular transport of the virus by affecting plasmodesmata callose and directly interacting with TMV MP, resulting in the reduced viral spread and replication.
    Plasmodesma
    Callose
    Tobamovirus
    Citations (5)