logo
    DRB2, DRB3 and DRB5 function in a non-canonical microRNA pathway inArabidopsis thaliana
    61
    Citation
    23
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    DOUBLE-STRANDED RNA BINDING (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets. ( 1) Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen ( 2) (,) ( 3) we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNAs.
    Keywords:
    Dicer
    RNA Silencing
    Trans-acting siRNA
    Dicer
    Argonaute
    Trans-acting siRNA
    RNA Silencing
    RNA-induced silencing complex
    RNA-induced transcriptional silencing
    Dicer processes long double-stranded RNA (dsRNA) and pre-microRNAs to generate the functional intermediates (short interfering RNAs and microRNAs) of the RNA interference pathway. Here we identify features of RNA structure that affect Dicer specificity and efficiency. The data presented show that various attributes of the 3′ end structure, including overhang length and sequence composition, play a primary role in determining the position of Dicer cleavage in both dsRNA and unimolecular, short hairpin RNA (shRNA). We also demonstrate that siRNA end structure affects overall silencing functionality. Awareness of these new features of Dicer cleavage specificity as it is related to siRNA functionality provides a more detailed understanding of the RNAi mechanism and can shape the development of hairpins with enhanced functionality.
    Dicer
    RNA Silencing
    Argonaute
    Trans-acting siRNA
    Ribonuclease III
    Cleavage (geology)
    RNA-induced silencing complex
    Citations (272)
    Abstract RNA interference/silencing mechanisms triggered by double‐stranded RNA (dsRNA) have been described in many eukaryotes, including fungi. These mechanisms have in common small RNA molecules (siRNAs or microRNAs) originating from dsRNAs that, together with the effector protein Argonaute, mediate silencing. The genome of the fungal pathogen Candida albicans harbours a well‐conserved Argonaute and a non‐canonical Dicer, essential members of silencing pathways. Prototypical siRNAs are detected as members of the C. albicans transcriptome, which is potential evidence of RNA interference/silencing pathways in this organism. Surprisingly, expression of a dsRNA a hairpin ADE2 dsRNA molecule to interfere with the endogenous ADE2 mRNA did not result in down‐regulation of the message or produce adenine auxotrophic strains. Cell free assays showed that the hairpin dsRNA was a substrate for the putative C. albicans Dicer, discounting the possibility that the nature of the dsRNA trigger affects silencing functionality. Our results suggested that unknown cellular events govern the functionality of siRNAs originating from transgenes in RNA interference/silencing pathways in C. albicans . Copyright © 2010 John Wiley & Sons, Ltd.
    Dicer
    Argonaute
    RNA Silencing
    Trans-acting siRNA
    RNA-induced transcriptional silencing
    RNA-induced silencing complex
    Citations (17)
    ABSTRACT RNA interference (RNAi) is a eukaryotic gene-silencing mechanism that functions in antiviral immunity in diverse organisms. To combat RNAi-mediated immunity, viruses encode viral suppressors of RNA silencing (VSRs) that target RNA and protein components in the RNAi machinery. Although the endonuclease Dicer plays key roles in RNAi immunity, little is known about how VSRs target Dicer. Here, we show that the B2 protein from Wuhan nodavirus (WhNV), the counterpart of Flock House virus (FHV), suppresses Drosophila melanogaster RNAi by directly interacting with Dicer-2 (Dcr-2) and sequestering double-stranded RNA (dsRNA) and small interfering RNA (siRNA). Further investigations reveal that WhNV B2 binds to the RNase III and Piwi-Argonaut-Zwille (PAZ) domains of Dcr-2 via its C-terminal region, thereby blocking the activities of Dcr-2 in processing dsRNA and incorporating siRNA into the RNA-induced silencing complex (RISC). Moreover, we uncover an interrelationship among diverse activities of WhNV B2, showing that RNA binding enhances the B2–Dcr-2 interaction by promoting B2 homodimerization. Taken together, our findings establish a model of suppression of Drosophila RNAi by WhNV B2 targeting both Dcr-2 and RNA and provide evidence that an interrelationship exists among diverse activities of VSRs to antagonize RNAi.
    Dicer
    RNA Silencing
    RNA-induced silencing complex
    RNA-induced transcriptional silencing
    Trans-acting siRNA
    Argonaute
    Citations (49)
    ABSTRACT RNA silencing refers to a conserved sequence‐specific gene‐regulation mechanism mediated by small RNA molecules. In plants, microRNA ( miRNA ) and small interfering RNA ( siRNA ) represent two major types of small RNA molecules which play pivotal roles in plant developmental control and antiviral defences. To escape these plant defences, plant viruses have encoded a vast array of viral suppressors of RNA silencing ( VSRs ) to attack the host antiviral silencing pathway by interfering with small RNA processing, RNA ‐induced silencing complex ( RISC ) assembly, viral mRNA cleavage etc. Transgenic plants expressing distinct VSRs often show developmental aberrations that resemble the phenotype of miRNA ‐deficient mutants, implying a potential intrinsic link between VSRs and the miRNA pathway (at least in Arabidopsis thaliana ) even though their pathogenic mechanisms remain largely unknown. In this review, we summarise our current structural understandings of the arms race between the host and virus along the RNA silencing pathway in A. thaliana by focusing on several important ribonucleoprotein ( RNP ) structures involved in RNA silencing and unique structural features adopted by VSRs .
    RNA-induced silencing complex
    RNA Silencing
    Trans-acting siRNA
    RNA-induced transcriptional silencing
    Argonaute
    Citations (9)
    In plants, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are effectors of RNA silencing, a process involved in defense through RNA interference (RNAi) and in development. Plant viruses are natural targets of RNA silencing, and as a counterdefensive strategy, they have evolved highly diverse silencing suppressor proteins. Although viral suppressors are usually thought to act at distinct steps of the silencing machinery, there had been no consensus system so far that allowed a strict side-by-side analysis of those factors. We have set up such a system in Arabidopsis thaliana and used it to compare the effects of five unrelated viral silencing suppressors on the siRNA and miRNA pathways. Although all the suppressors inhibited RNAi, only three of them induced developmental defects, indicating that the two pathways are only partially overlapping. These developmental defects were remarkably similar, and their penetrance correlated with inhibition of miRNA-guided cleavage of endogenous transcripts and not with altered miRNA accumulation per se. Among the suppressors investigated, the tombusviral P19 protein coimmunoprecipitated with siRNA duplexes and miRNA duplexes corresponding to the primary cleavage products of miRNA precursors. Thus, it is likely that P19 prevents RNA silencing by sequestering both classes of small RNAs. Moreover, the finding here that P19 binds siRNAs and suppresses RNAi in Hela cells also suggests that this factor may be useful to dissect the RNA silencing pathways in animals. Finally, the differential effects of the silencing suppressors tested here upon other types of Arabidopsis silencing-related small RNAs revealed a surprising variety of biosynthetic and, presumably, functional pathways for those molecules. Therefore, silencing suppressors are valuable probes of the complexity of RNA silencing.
    Trans-acting siRNA
    Argonaute
    RNA Silencing
    RNA-induced silencing complex
    RNA-induced transcriptional silencing
    Piwi-interacting RNA
    Dicer
    Citations (451)
    Double-stranded RNA (dsRNA) induces a sequence-specific silencing in eukaryotic cells. This silencing process beggins when long dsRNA is cleaved to 21 to 26 long small RNA by means of the RNAse III-type enzyme Dicer. These small dsRNA are included into silencing effector complexes, that are targeted to complementary sequences. Small RNA dependent gene silencing can be achieved by distinct mechanisms based depending mainly on the nature of target sequences and on the proteins present in the effector complex. The route of interference RNA (RNAi) begins when Dicer yields small interference RNA (siRNA) that bind to complementary mRNA for its degradation, forming the RISC complex. siRNA are naturally formed from transposons and dsRNA viruses during its replication, as well as from other bidirectional transcribed repetitive sequences. Some of the enzymes thar are part of the RNAi machinery, including Dicer, are encoded by multigene families in many species, that also play a role in other mechanisms of RND-dependent gene silencing. MicroRNA's (miRNA) are other small RNA's that can induce gene silencing at the mRNA level. These are formed in a general manner when Dicer process hairpin structures resulting from the transcription of non-coding sequences from plant and animal genomes. miRNA's are integrated into a RISC-like complex, after which, depending on their degree of complementarity with target mRNA, can either repress translation or induce mRNA degradation. miRNA-dependent silencing is essential for the development of multicellular organisms. Artificial RNAi induction by means of siRNA or miRNA is being used as a tool to inactivate gene expression in culture cells and in living organisms. This review focuses on the progress in the understanding of the mechanisms involved in gene regulation by RNA in animals and details some current efforts to apply theses phenomena as a tool in research and in the therapeutic of human diseases.
    Dicer
    RNA Silencing
    RNA-induced silencing complex
    Trans-acting siRNA
    Argonaute
    RNA-induced transcriptional silencing
    Citations (10)
    Dicer
    RNA Silencing
    Ribonuclease III
    Argonaute
    RNA-induced silencing complex
    Citations (450)