logo
    Estimation of empirical null using a mixture of normals and its use in local false discovery rate
    6
    Citation
    29
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    False Discovery Rate
    Null (SQL)
    Multiple comparisons problem
    Popular procedures to control the chance of making type I errors when multiple statistical tests are performed come at a high cost: a reduction in power. As the number of tests increases, power for an individual test may become unacceptably low. This is a consequence of minimizing the chance of making even a single type I error, which is the aim of, for instance, the Bonferroni and sequential Bonferroni procedures. An alternative approach, control of the false discovery rate (FDR), has recently been advocated for ecological studies. This approach aims at controlling the proportion of significant results that are in fact type I errors. Keeping the proportion of type I errors low among all significant results is a sensible, powerful, and easy‐to‐interpret way of addressing the multiple testing issue. To encourage practical use of the approach, in this note we illustrate how the proposed procedure works, we compare it to more traditional methods that control the familywise error rate, and we discuss some recent useful developments in FDR control.
    Bonferroni correction
    False Discovery Rate
    Multiple comparisons problem
    Statistical power
    Word error rate
    For the problem of multiple testing, the Benjamini-Hochberg (B-H) procedure has become a very popular method in applications. We show how the B-H procedure can be interpreted as a test based on the spacings corresponding to the p-value distributions. This interpretation leads to the incorporation of the empirical null hypothesis, a term coined by Efron (2004). We develop a mixture modelling approach for the empirical null hypothesis for the B-H procedure and demonstrate some theoretical results regarding both finite-sample as well as asymptotic control of the false discovery rate. The methodology is illustrated with application to two high-throughput datasets as well as to simulated data.
    False Discovery Rate
    Multiple comparisons problem
    Null (SQL)
    p-value
    Citations (29)
    Abstract High‐dimensional hypothesis testing is ubiquitous in the biomedical sciences, and informative covariates may be employed to improve power. The conditional false discovery rate (cFDR) is a widely used approach suited to the setting where the covariate is a set of p‐values for the equivalent hypotheses for a second trait. Although related to the Benjamini–Hochberg procedure, it does not permit any easy control of type‐1 error rate and existing methods are over‐conservative. We propose a new method for type‐1 error rate control based on identifying mappings from the unit square to the unit interval defined by the estimated cFDR and splitting observations so that each map is independent of the observations it is used to test. We also propose an adjustment to the existing cFDR estimator which further improves power. We show by simulation that the new method more than doubles potential improvement in power over unconditional analyses compared to existing methods. We demonstrate our method on transcriptome‐wide association studies and show that the method can be used in an iterative way, enabling the use of multiple covariates successively. Our methods substantially improve the power and applicability of cFDR analysis.
    False Discovery Rate
    Multiple comparisons problem
    Word error rate
    Statistical power
    Citations (16)
    Recently, the idea of multiple comparisons has been criticized because of its lack of power in datasets with a large number of treatments. Many family-wise error corrections are far too restrictive when large quantities of comparisons are being made. At the other extreme, a test like the least significant difference does not control the family-wise error rate, and therefore is not restrictive enough to identify true differences. A solution lies in multiple testing. The false discovery rate (FDR) uses a simple algorithm and can be applied to datasets with many treatments. The current research compares the FDR method to Dunnett's test using agronomic data from a study with 196 varieties of dry beans. Simulated data is used to assess type I error and power of the tests. In general, the FDR method provides a higher power than Dunnett's test while maintaining control of the type I error rate.
    False Discovery Rate
    Multiple comparisons problem
    Word error rate
    Statistical power
    Citations (1)
    When many tests of significance are examined in a research investigation with procedures that limit the probability of making at least one Type I error--the so-called familywise techniques of control--the likelihood of detecting effects can be very low. That is, when familywise error controlling methods are adopted to assess statistical significance, the size of the critical value that must be exceeded in order to obtain statistical significance can be extremely large when the number of tests to be examined is also very large. In our investigation we examined three methods for increasing the sensitivity to detect effects when family size is large: the false discovery rate of error control presented by Benjamini and Hochberg (1995), a modified false discovery rate presented by Benjamini and Hochberg (2000) which estimates the number of true null hypotheses prior to adopting false discovery rate control, and a familywise method modified to control the probability of committing two or more Type I errors in the family of tests examined--not one, as is the case with the usual familywise techniques. Our results indicated that the level of significance for the two or more familywise method of Type I error control varied with the testing scenario and needed to be set on occasion at values in excess of 0.15 in order to control the two or more rate at a reasonable value of 0.01. In addition, the false discovery rate methods typically resulted in substantially greater power to detect non-null effects even though their levels of significance were set at the standard 0.05 value. Accordingly, we recommend the Benjamini and Hochberg (1995, 2000) methods of Type I error control when the number of tests in the family is large.
    False Discovery Rate
    Multiple comparisons problem
    Statistical power
    p-value
    Word error rate
    Null (SQL)
    Statistical Process Control
    False positive rate
    Citations (157)
    When testing a single hypothesis, it is common knowledge that increasing the sample size after nonsignificant results and repeating the hypothesis test several times at unadjusted critical levels inflates the overall Type I error rate severely. In contrast, if a large number of hypotheses are tested controlling the False Discovery Rate, such “hunting for significance” has asymptotically no impact on the error rate. More specifically, if the sample size is increased for all hypotheses simultaneously and only the test at the final interim analysis determines which hypotheses are rejected, a data dependent increase of sample size does not affect the False Discovery Rate. This holds asymptotically (for an increasing number of hypotheses) for all scenarios but the global null hypothesis where all hypotheses are true. To control the False Discovery Rate also under the global null hypothesis, we consider stopping rules where stopping before a predefined maximum sample size is reached is possible only if sufficiently many null hypotheses can be rejected. The procedure is illustrated with several datasets from microarray experiments.
    False Discovery Rate
    Multiple comparisons problem
    Alternative hypothesis
    Null (SQL)
    Sample (material)
    Interim
    Citations (16)
    It is a typical feature of high dimensional data analysis, for example a microarray study, that a researcher allows thousands of statistical tests at a time. All inferences for the tests are determined using the p-values; a smaller p-value than the α-level of the test signifies a statistically significant test. As the number of tests increases, the chance of observing some small p-values is very high even when all null hypotheses are true. Consequently, we make wrong conclusions on the hypotheses. This type of potential problem frequently happens when we test several hypotheses simultaneously, i.e., the multiple testing problem. Adjustment of the p-values can redress the problem that arises in multiple hypothesis testing. P-value adjustment methods control error rates [type I error (i.e. false positive) and type II error (i.e. false negative)] for each hypothesis in order to achieve high statistical power while keeping the overall Family Wise Error Rate (FWER) no larger than α, where α is most often set to 0.05. However, researchers also consider the False Discovery Rate (FDR), or Positive False Discovery Rate (pFDR) instead of the type I error in multiple comparison problems for microarray studies. The methods involved in controlling the FDR always provide higher statistical power than the methods involved in controlling the type I error rate while keeping the type II error rate low. In practice, microarray studies involve dependent test statistics (or p-values) because genes can be fully dependent on each other in a complicated biological structure. However, some of the p-value adjustment methods only deal with independent test statistics. Thus, we carry out a simulation study with several methods involved in multiple hypothesis testing.
    False Discovery Rate
    Multiple comparisons problem
    p-value
    Statistical power
    Word error rate
    False positive rate
    Nominal level
    Citations (0)
    Abstract High-dimensional hypothesis testing is ubiquitous in the biomedical sciences, and informative covariates may be employed to improve power. The conditional false discovery rate (cFDR) is widely-used approach suited to the setting where the covariate is a set of p-values for the equivalent hypotheses for a second trait. Although related to the Benjamini-Hochberg procedure, it does not permit any easy control of type-1 error rate, and existing methods are over-conservative. We propose a new method for type-1 error rate control based on identifying mappings from the unit square to the unit interval defined by the estimated cFDR, and splitting observations so that each map is independent of the observations it is used to test. We also propose an adjustment to the existing cFDR estimator which further improves power. We show by simulation that the new method more than doubles potential improvement in power over unconditional analyses compared to existing methods. We demonstrate our method on transcriptome-wide association studies, and show that the method can be used in an iterative way, enabling the use of multiple covariates successively. Our methods substantially improve the power and applicability of cFDR analysis.
    False Discovery Rate
    Multiple comparisons problem
    Word error rate
    Statistical power
    Citations (7)
    Abstract When a large number of statistical tests is performed, the chance of false positive findings could increase considerably. The traditional approach is to control the probability of rejecting at least one true null hypothesis, the familywise error rate (FWE). To improve the power of detecting treatment differences, an alternative approach is to control the expected proportion of errors among the rejected hypotheses, the false discovery rate (FDR). When some of the hypotheses are not true, the error rate from either the FWE- or the FDR-controlling procedure is usually lower than the designed level. This paper compares five methods used to estimate the number of true null hypotheses over a large number of hypotheses. The estimated number of true null hypotheses is then used to improve the power of FWE- or FDR-controlling methods. Monte Carlo simulations are conducted to evaluate the performance of these methods. The lowest slope method, developed by Benjamini and Hochberg (2000) on the adaptive control of the FDR in multiple testing with independent statistics, and the mean of differences method appear to perform the best. These two methods control the FWE properly when the number of nontrue null hypotheses is small. A data set from a toxicogenomic microarray experiment is used for illustration.
    False Discovery Rate
    Multiple comparisons problem
    Null (SQL)
    Statistical power
    Alternative hypothesis
    Citations (110)