Excitation of a progressive plate wave by the photothermal effect
3
Citation
15
Reference
10
Related Paper
Keywords:
Photothermal effect
Exploring highly efficient catalysts with excellent photothermal conversion and further unveiling their catalytic mechanism are of significant importance for photothermal catalysis technologies, but there remain grand challenges to these activities. Herein, we fabricate a nest-like photothermal nanocatalyst with Pd decorated on a N-doped carbon functionalized Bi2S3 nanosphere (Bi2S3@NC@Pd). Given its well-dispersed ultrafine Pd nanoparticles and the excellent photothermal heating ability of support material, the Bi2S3@NC@Pd composite exhibits a superior activity and photothermal conversion property to commercial Pd/C catalyst for hydrogenation of organic dyes upon exposure to near-infrared (NIR) light irradiation. In addition, the photothermal effect (temperature rise) and activity enhancement of the heterogeneous catalysis system are further probed by comparing the reaction rate with and without the NIR light irradiation. Furthermore, the catalytic behaviors of the Bi2S3@NC@Pd catalyst under conventional and photothermal heating are investigated at the same reaction temperature. This work not only improves our fundamental understanding of the catalytic behavior in heterogeneous liquid–solid reaction systems under near-infrared irradiation but also may promote the design of catalysts with photothermally promoted activity.
Photothermal effect
Degradation
Cite
Citations (25)
Abstract The surface plasmon resonance (SPR) induced photothermal and photoelectrocatalysis effects are crucial for catalytic reactions in many areas. However, it is still difficult to distinguish these two effects quantitatively. Here we used surface‐enhanced Raman scattering (SERS) to detect the photothermal and photoelectrocatalytic effects induced by SPR from Au core Pt shell Nanoparticles (Au@Pt NPs), and calculated the quantitative contribution of the ratio of the photothermal and photoelectrocatalysis effects towards the catalytic activity. The photothermal effect on the nanoparticle surface after illumination is detected by SERS. The photoelectrocatalytic effect generated from SPR is proved by SERS with a probe molecule of p ‐aminothiophenol (PATP).
Photothermal effect
Cite
Citations (184)
Nanorod
Photothermal effect
Cite
Citations (127)
Abstract The surface plasmon resonance (SPR) induced photothermal and photoelectrocatalysis effects are crucial for catalytic reactions in many areas. However, it is still difficult to distinguish these two effects quantitatively. Here we used surface‐enhanced Raman scattering (SERS) to detect the photothermal and photoelectrocatalytic effects induced by SPR from Au core Pt shell Nanoparticles (Au@Pt NPs), and calculated the quantitative contribution of the ratio of the photothermal and photoelectrocatalysis effects towards the catalytic activity. The photothermal effect on the nanoparticle surface after illumination is detected by SERS. The photoelectrocatalytic effect generated from SPR is proved by SERS with a probe molecule of p ‐aminothiophenol (PATP).
Photothermal effect
Cite
Citations (34)
Photothermal effect
Cite
Citations (11)
Photothermal neural activity inhibition has emerged as a minimally invasive neuromodulation technology with submillimeter precision. One of the techniques involves the utilization of plasmonic gold nanoparticles (AuNPs) to modulate neural activity by photothermal effects ("thermoplasmonics"). A surface modification technique is often required to integrate AuNPs onto the neural interface. Here, polydopamine (pDA), a multifunctional adhesive polymer with a wide light absorption spectrum, is introduced both as a primer layer for the immobilization of gold nanorods (GNRs) on the neural interface and as an additional photothermal agent by absorbing near-infrared red (NIR) lights for more efficient photothermal effects. First, the optical and photothermal properties of pDA as well as the characteristics of GNRs attached onto the pDA film are investigated for the optimized photothermal neural interface. Due to the covalent bonding between GNR surfaces and pDA, GNRs immobilized on pDA showed strong attachment onto the surface, yielding a more stable photothermal platform. Lastly, when photothermal neural stimulation was applied to the primary rat hippocampal neurons, the substrate with GNRs immobilized on the pDA film allowed more laser power-efficient photothermal neuromodulation as well as photothermal cell death. This study suggests the feasibility of using pDA as a surface modification material for developing a photothermal platform for the inhibition of neural activities.
Photothermal effect
Nanorod
Surface Modification
Cite
Citations (13)
Photothermal effect
Cite
Citations (11)
Photothermal effect
Cite
Citations (6)
Nanorod
Photothermal effect
Cite
Citations (79)
Photothermal effect
Charge carrier
Nanomaterials
Visible spectrum
Cite
Citations (58)