logo
    Composition dependent mechanical response of transparent poly(vinyl alcohol) hydrogels
    26
    Citation
    27
    Reference
    10
    Related Paper
    Citation Trend
    The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
    Gelatin
    Gellan gum
    Citations (52)
    Biological hydroxyapatite (BHAp) derived from thermally-treated fish bones was successfully produced. However, the obtained biological HAp was amorphous and thus making it unfavorable for medical application. Consequently, this research exploits and engineers the crystallinity of BHAp powders by addition of CaCO3 and investigates its degree of crystallinity using XRD and IR spectroscopy. On XRD, the HAp powders with [Ca]/[P] ratios 1.42, 1.46, 1.61 and 1.93 have degree of crystallinity equal to 58.08, 72.13, 85.79, 75.85% and crystal size equal to 0.67, 0.74, 0.75, 0.72 nm, respectively. The degree of crystallinity and crystal size of the obtained calcium deficient biological HAp powders increase as their [Ca]/[P] ratio approaches the stoichiometric ratio by addition of CaCO3 as source of Ca2+ ions. These results show the possibility of engineering the crystallinity and crystal size of biological HAp by addition of CaCO3. Moreover, the splitting factor of PO4 vibration matches the result with % crystallinity on XRD. Also, the area of phosphate-substitution site of PO4 vibration shows linear relationship (R2 = 0.994) with crystal size calculated from XRD. It is worth noting that the crystallinity of the biological HAp with [Ca]/[P] ratios 1.42 and 1.48 fall near the range 60-70% for highly resorbable HAp used in the medical application.
    Crystal (programming language)
    Stoichiometry
    Abstract A freezing‐thawing process of aqueous poly(vinyl alcohol), (PVA) solutions was undertaken to study the supermolecular PVA structures produced. Aqueous solutions of 2,5 to 15 wt.‐% PVA were frozen at −20°C for 45 to 120min and were subsequently thawed for long periods of time (up to 12h) at 23 ± 1°C. The transmittance of visible light was recorded as a function of thawing time. Determination of the parameters of the supermolecular particles in the PVA solutions was done by application of Klenin's theory. The average radii of the particles were in the order of 1,6–2,3 μm.
    Vinyl alcohol
    Citations (248)
    The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
    Gelatin
    Gellan gum
    Citations (0)
    Crystallinity of polymeric dielectrics is known to be influenced by cross-linking. To study that influence, gel fraction measurements and evaluation of the degree of crystallinity were performed under different cross-linking temperatures using XLPE samples with different DCP concentrations. Furthermore, the influence of antioxidants on XLPE crystallinity was studied. Gel fraction and crystallinity measurements were made of XLPE samples containing different concentrations of DCP and phenolic or sulfur-type antioxidants. The experimental results are used to discuss the influence of antioxidant on cross-linking and crystallinity of XLPE.
    Fraction (chemistry)
    Cross-link
    Abstract Crystallinity is an important parameter of thermoplastic polymers. Furthermore, crystallinity is closely related to processing conditions such as temperature and applied shear stress. However, determining the degree of crystallinity is very complicated because of the different interpretations of crystallinity according to each technique. In this paper, we analyze the crystallinity of polyethylene glycol-based composites using two instruments, i.e., X-Ray Diffraction (XRD) and wide-angle X-Ray Scattering (WAXS). The results showed that with the addition of 60 wt.% silica, the degree of crystallinity revealed by XRD was 81.24%, while WAXS showed a degree of crystallinity of 80.93%. In general, the crystallinity results obtained with WAXS were almost identical, only 0.31% different from the XRD results. This difference in results was due to more presence as a consequence of the broad amorphous halo and background instrumentation exhibited by the higher background from XRD. Thus, the instrument effect must first be removed from the XRD data and it is possible that the amorphous region of the sample will also be reduced and result in a slightly higher crystallinity. At the same time WAXS with the transmission technique will minimize the possibility of background instrumentation. Therefore, WAXS was recommended to analyze the crystallinity of polymer-based and amorphous materials.