logo
    GM130, a cis-Golgi protein, regulates meiotic spindle assembly and asymmetric division in mouse oocyte
    49
    Citation
    13
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    GM130, a cis-Golgi protein, plays key roles in various mitotic events, but its function in mammalian oocyte meiosis remains unknown. In this study, we found that GM130 was localized to the spindle poles at both metaphase I and metaphase II stages and associated with the midbody at telophase I stage. The association of GM130 with spindle poles was further confirmed by its colocalization with the centrosome-associated proteins, MEK1/2. By nocodazole treatment, we clarified that GM130 localization was consistently dependent on spindle assembly. Then we investigated the possible function of GM130 by specific morpholino microinjection. This treatment caused abnormal spindle formation, and decreased first polar body extrusion. Our results showed that knockdown of GM130 impaired the localization of MTOCs proteins γ-tubulin and Plk1. Using live cell imaging we observed that depletion of GM130 affected spindle migration and resulted in elongated spindle and large polar body extrusion. We further found that depletion of GM130 blocked p-MEK1/2 accumulation at the spindle poles. And, it was shown that GM130 detached from the spindle poles in oocytes treated with MEK specific inhibitor U0126. Taken together, our results suggested that GM130 regulates microtubule organization and might cooperate with the MAPK pathway to play roles in spindle organization, migration and asymmetric division during mouse oocyte maturation.
    Keywords:
    Spindle pole body
    Multipolar spindles
    Midbody
    Nocodazole
    Spindle checkpoint
    Microtubule organizing center
    Polar body
    ABSTRACT During oocyte meiosis, migration of the spindle and its positioning must be tightly regulated to ensure elimination of the polar bodies and provide developmentally competent euploid eggs. Although the role of F-actin in regulating these critical processes has been studied extensively, little is known whether microtubules (MTs) participate in regulating these processes. Here, we characterize a pool of MTOCs in the oocyte that does not contribute to spindle assembly but instead remains free in the cytoplasm during metaphase I (metaphase cytoplasmic MTOCs; mcMTOCs). In contrast to spindle pole MTOCs, which primarily originate from the perinuclear region in prophase I, the mcMTOCs are found near the cortex of the oocyte. At nuclear envelope breakdown, they exhibit robust nucleation of MTs, which diminishes during polar body extrusion before returning robustly during metaphase II. The asymmetric positioning of the mcMTOCs provides the spindle with a MT-based anchor line to the cortex opposite the site of polar body extrusion. Depletion of mcMTOCs, by laser ablation, or manipulating their numbers, through autophagy inhibition, revealed that the mcMTOCs are required to regulate the timely migration and positioning of the spindle in meiosis. We discuss how forces exerted by F-actin in mediating movement of the spindle to the oocyte cortex are balanced by MT-mediated forces from the mcMTOCs to ensure spindle positioning and timely spindle migration.
    Polar body
    Microtubule organizing center
    Spindle pole body
    Multipolar spindles
    Microtubule nucleation
    Citations (2)
    A wave of structural reorganization involving centrosomes, microtubules, Golgi complex and ER exit sites takes place early during skeletal muscle differentiation and completely remodels the secretory pathway. The mechanism of these changes and their functional implications are still poorly understood, in large part because all changes occur seemingly simultaneously. In an effort to uncouple the reorganizations, we have used taxol, nocodazole, and the specific GSK3-β inhibitor DW12, to disrupt the dynamic microtubule network of differentiating cultures of the mouse skeletal muscle cell line C2. Despite strong effects on microtubules, cell shape and cell fusion, none of the treatments prevented early differentiation. Redistribution of centrosomal proteins, conditional on differentiation, was in fact increased by taxol and nocodazole and normal in DW12. Redistributions of Golgi complex and ER exit sites were incomplete but remained tightly linked under all circumstances, and conditional on centrosomal reorganization. We were therefore able to uncouple microtubule reorganization from the other events and to determine that centrosomal proteins lead the reorganization hierarchy. In addition, we have gained new insight into structural and functional aspects of the reorganization of microtubule nucleation during myogenesis.
    Nocodazole
    Microtubule organizing center
    Microtubule nucleation
    Indirect immunofluorescence labeling of normal rat kidney (NRK) cells with antibodies recognizing a lysosomal glycoprotein (LGP 120; Lewis, V., S.A. Green, M. Marsh, P. Vihko, A. Helenius, and I. Mellman, 1985, J. Cell Biol., 100:1839-1847) reveals that lysosomes accumulate in the region around the microtubule-organizing center (MTOC). This clustering of lysosomes depends on microtubules. When the interphase microtubules are depolymerized by treatment of the cells with nocodazole or during mitosis, the lysosomes disperse throughout the cytoplasm. Lysosomes recluster rapidly (within 30-60 min) in the region of the centrosomes either upon removal of the drug, or, in telophase, when repolymerization of interphase microtubules has occurred. During this translocation process the lysosomes can be found aligned along centrosomal microtubules. Endosomes and lysosomes can be visualized by incubating living cells with acridine orange. We have analyzed the movement of these labeled endocytic organelles in vivo by video-enhanced fluorescence microscopy. Translocation of endosomes and lysosomes occurs along linear tracks (up to 10 microns long) by discontinuous saltations (with velocities of up to 2.5 microns/s). Organelles move bidirectionally with respect to the MTOC. This movement ceases when microtubules are depolymerized by treatment of the cells with nocodazole. After nocodazole washout and microtubule repolymerization, the translocation and reclustering of fluorescent organelles predominantly occurs in a unidirectional manner towards the area of the MTOC. Organelle movement remains unaffected when cells are treated with cytochalasin D, or when the collapse of intermediate filaments is induced by microinjected monoclonal antivimentin antibodies. It can be concluded that translocation of endosomes and lysosomes occurs along microtubules and is independent of the intermediate filament and microfilament networks.
    Nocodazole
    Microtubule organizing center
    Organelle
    Citations (498)
    Adenoviruses (Ad) must deliver their genomes to the nucleus of the target cell to initiate an infection. Following entry into the cell and escape from the endosome, Ad traffics along the microtubule cytoskeleton toward the nucleus. In the final step in Ad trafficking, Ad must leave the microtubule and establish an association with the nuclear envelope. We hypothesized that in cells lacking a nucleus, the capsid moves to and associates with the microtubule organizing center (MTOC). To test this hypothesis, we established an experimental system to examine Ad trafficking in enucleated cells compared to Ad trafficking in intact, mock-enucleated cells. Enucleation of a monolayer of A549 human lung epithelial cells was accomplished by depolymerization of the actin cytoskeleton followed by centrifugation. Upon infection of enucleated cells with Cy3-labeled Ad, the majority of Ad capsid trafficked to a discrete, centrally located site which colocalized with pericentrin, a component of the MTOC. MTOC-associated Ad had escaped from endosomes and thus had direct access to MTOC components. Ad localization at this site was sensitive to the microtubule-depolymerizing agent nocodazole, but not to the microfilament-depolymerizing agent cytochalasin B, indicating that intact microtubules were required to maintain the localization with the MTOC. Ad localization to the MTOC in the enucleated cells was stable, as demonstrated by continuing Ad localization with pericentrin for more than 5 h after infection, a strong preference for Ad arrival at rather than Ad departure from the MTOC, and minimal redistribution of Ad between MTOCs within a single cell. In summary, the data demonstrate that the Ad capsid establishes a stable interaction with the MTOC when a nucleus is not present, suggesting that dissociation of Ad from microtubules likely requires nuclear factors.
    Microtubule organizing center
    Nocodazole
    The intracellular spatial relationships between elements of the Golgi apparatus (GA) and microtubules in interphase cells have been explored by double immunofluorescence microscopy. By using cultured cells infected with the temperature-sensitive Orsay-45 mutant of vesicular stomatitis virus and a temperature shift-down protocol, we visualized functional elements of the GA by immunolabeling of the G protein of the virus that was arrested in the GA during its intracellular passage to the plasma membrane 13 min after the temperature shift-down. Complete disassembly of the cytoplasmic microtubules by nocodazole at the nonpermissive temperature before the temperature shift led to the dispersal of the GA elements, from their normal compact perinuclear configuration close to the microtubule-organizing center (MTOC) into the cell periphery. Washout of the nocodazole that led to the reassembly of the microtubules from the MTOC also led to the recompaction of the GA elements to their normal configuration. During this recompaction process, GA elements were seen in close lateral apposition to microtubules. In cells treated with nocodazole followed by taxol, an MTOC developed, but most of the microtubules were free of the MTOC and were assembled into bundles in the cell periphery. Under these circumstances, the GA elements that had been dispersed into the cell periphery by the nocodazole treatment remained dispersed despite the presence of an MTOC. In cells treated directly with taxol, free microtubules were seen in the cytoplasm in widely different, bundled configurations from one cell to another, but, in each case, elements of the GA appeared to be associated with one of the two end regions of the microtubule bundles, and to be uncorrelated with the locations of the vimentin intermediate filaments in these cells. These results are interpreted to suggest two types of associations of elements of the GA with microtubules: one lateral, and the other (more stable) end-on. The end-on association is suggested to involve the minus-end regions of microtubules, and it is proposed that this accounts for the GA-MTOC association in normal cells.
    Nocodazole
    Microtubule organizing center
    Citations (292)
    Microtubules in interphase fibroblast-like cells are thought to be organized in a radial array growing from a centrosome-based microtubule-organizing center (MTOC) to the cell edges. However, many morphogenetic processes require the asymmetry of the microtubules (MT) array. One of the possible mechanisms of this asymmetry could be the presence of non-centrosomal microtubules in different intracellular areas. To evaluate the role of centrosome-born and non-centrosomal microtubules in the organization of microtubule array in motile 3T3 fibroblasts, we have performed the high-throughput analysis of microtubule growth in different functional zones of the cell and distinguished three subpopulations of growing microtubules (centrosome-born, marginal and inner cytoplasmic). Centrosome as an active microtubule-organizing center was absent in half of the cell population. However, these cells do not show any difference in microtubule growth pattern. In cells with active centrosome, it was constantly forming short (ephemeral) MTs, and ∼15-20 MT per minute grow outwards for a distance >1 µm. Almost no persistent growth of microtubules was observed in these cells with the average growth length of 5-6 µm and duration of growth periods within 30 s. However, the number of growing ends increased towards cell margin, especially towards the active edges. We found the peripheral cytoplasmic foci of microtubule growth there. During recovery from nocodazole treatment microtubules started to grow around the centrosome in a normal way and independently in all the cell areas. Within 5 minutes microtubules continued to grow mainly near the cell edge. Thus, our data confirm the negligible role of centrosome as MTOC in 3T3 fibroblasts and propose a model of non-centrosomal microtubules as major players that create the cell asymmetry in the cells with a mesenchymal type of motility. We suggest that increased density of dynamic microtubules near the active lamellum could be supported by microtubule-based microtubule nucleation.
    Nocodazole
    Microtubule organizing center
    Astral microtubules
    Cytoplast
    Microtubule nucleation
    Citations (0)
    The interplay between genetic and epigenetic factors plays a central role in mammalian embryo production strategies that superimpose ex vivo or in vivo manipulations upon strain background characteristics. In this study, we examined the relationship between genetic background and the phenotypic properties of mouse metaphase-II (M-II) oocytes that were matured under in vivo (IVO) or in vitro conditions, either in a basal (IVM) or a supplemented (IVM + ) medium. Differences existed amongst inbred (C57BL/6), outbred (CF-1, Black Swiss, NU/NU) and hybrid lines (B6D2F1) induced to superovulate with regard to cytoplasmic microtubule organizing center (MTOC) number but not spindle size or shape, except for larger and asymmetrical spindles in Black Swiss oocytes. When oocytes were matured in culture, meiotic spindle and cytoplasmic phenotypic properties of M-II oocytes were affected relative to in vivo conditions and between strains. Specifically, measures of meiotic spindle size, shape, polar pericentrin distribution and cytoplasmic MTOC number all revealed characteristic variations. Interestingly, the overall reduction in cytoplasmic MTOC number noted upon IVM was concomitant with an overall increase in spindle and polar body size. Maturation under IVM + conditions resulted in a further decrease in cytoplasmic MTOC number, but spindle and polar body characteristics were intermediate between IVO and IVM. How these oocyte phenotypic properties of maternal origin may be linked to predictive assessments of fecundity remains to be established.
    Microtubule organizing center
    Polar body
    In vitro maturation
    Multipolar spindles
    Citations (31)
    Abstract The cytoplasmic microtubule system seems to influence the position and structure of nucleoli in Dictyostelium discoideum amoebae in several growing and migrating states. For example, nucleoli were usually excluded from the nuclear periphery near the microtubule‐organizing center (MTOC) in all cases; and in migrating adherent cells, more than half the nucleoli were located opposite the MTOC. This localization was disrupted by nocodazole treatment, after which the nucleoli were largely dispersed except near the MTOC. More extensive effects of microtubules on nucleolar structure were seen in aggregating cells. In contrast to the normal oval structure in growing cells, nucleoli took on a different morphology: they protruded from the leading edge of nuclei and elongated to form nozzle‐like structures. Analysis by rapid‐freeze substitution and indirect immunofluorescence showed each nozzle surrounded by more than 10 microtubules; and in the presence of nocodazole, the microtubules shortened as expected and the nozzles disappeared. Between microtubules and the outer nuclear envelope, various‐sized cross‐bridges were seen. The implication that microtubules were associated with the nucleoli in aggregating cells was verified in vitro: nuclei isolated from growing cells contained the MTOC but few if any detectable microtubules; but nuclei from aggregating cells were surrounded by them. These data are consistent with the notion the microtubule system may help regulate the position and conformation of nucleoli during early development of Dictyostelium .
    Nocodazole
    Microtubule organizing center
    Citations (27)
    Adenovirus serotypes 2 and 5 are taken into cells by receptor-mediated endocytosis, and following release from endosomes, destabilized virions travel along microtubules to accumulate around the nucleus. The entry process culminates in delivery of the viral genome through nuclear pores. This model is based on studies with conventional cell lines, such as HeLa and HEp-2, but in HEK293 cells, which are routinely used in this laboratory because they are permissive for replication of multiple adenovirus serotypes, a different trafficking pattern has been observed. Nuclei of 293 cells have an irregular shape, with an indented region, and virions directly labeled with carboxyfluorescein accumulate in a cluster within that indented region. The clusters, which form in close proximity to the microtubule organizing center (MTOC) and to the Golgi apparatus, are remarkably stable; a fluorescent signal can be seen in the MTOC region up to 16 h postinfection. Furthermore, if cells are infected and then undergo mitosis after the cluster is formed, the signal is found at each spindle pole. Despite the sequestration of virions near the MTOC, 293 cells are no less sensitive than other cells to productive infection with adenovirus. Even though cluster formation depends on intact microtubules, infectivity is not compromised by disruption of microtubules with either nocodazole or colchicine, as determined by expression of an enhanced green fluorescent protein reporter gene inserted in the viral genome. These results indicate that virion clusters do not represent the infectious pathway and suggest an alternative route to the nucleus that does not depend on nocodazole-sensitive microtubules.
    Nocodazole
    Microtubule organizing center
    HEK 293 cells
    Microtubule-associated protein
    Citations (24)