Myocardial glutathione depletion impairs recovery of isolated blood-perfused hearts after global ischaemia
62
Citation
24
Reference
10
Related Paper
Citation Trend
Keywords:
Buthionine sulfoximine
Creatine kinase
Buthionine sulfoximine
Cite
Citations (55)
Buthionine sulfoximine
Tripeptide
Glutathione synthetase
Cite
Citations (100)
Ascaris suum
Buthionine sulfoximine
Cite
Citations (11)
Growth of cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, in the presence of cadmium is inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. Cell growth and phytochelatin synthesis are restored to cells treated with buthionine sulfoximine by the addition of glutathione to the medium. Glutathione stimulates the accumulation of phytochelatins in cadmium treated cells, indicating that availability of glutathione can limit synthesis of these peptides. Exogenous glutathione causes a disproportionate increase in the level of smaller phytochelatins, notably [γ-Glu-Cys]2-Gly. In the presence of buthionine sulfoximine and glutathione, phytochelatins that are produced upon exposure to cadmium incorporate little [35S]cysteine, indicating that these peptides are probably not synthesized by sequential addition of cysteine and glutamate to glutathione.
Phytochelatin
Cite
Citations (52)
Buthionine sulfoximine
Cite
Citations (35)
Buthionine sulfoximine
Suspension culture
Cite
Citations (51)
The hepatic levels of glutathione in rats treated with buthionine sulfoximine (4 mmol/kg), an inhibitor of glutathione synthesis, were 72.5% +/- 4.9% of those determined in control animals. This decrease in glutathione concentration was prevented by the administration of glutathione monoethyl ester (7.5 mmol/kg). S-Adenosyl-L-methionine-synthetase activity in the liver of rats treated with buthionine sulfoximine was 39.4% +/- 6.5% of that determined in control animals. Again, glutathione monoethyl ester prevented the effect of buthionine sulfoximine on S-adenosyl-L-methionine-synthetase activity. There was a close correlation (r = 0.936) between the hepatic levels of glutathione and S-adenosyl-L-methionine-synthetase activity. The hepatic concentration of S-adenosyl-L-methionine in buthionine sulfoximine-treated animals was 59.7% +/- 3.7% of that measured in control rats. Contrasting with the protective effects mentioned above, glutathione monoester had no preventive action on buthionine sulfoximine-induced S-adenosyl-L-methionine depletion. Electron microscopic examination of liver samples of rats after buthionine sulfoximine administration showed evidence of liver degeneration, which was attenuated by glutathione monoethyl ester treatment. Glutathione (7.5 mmol/kg) treatment was less effective than glutathione monoethyl ester in attenuating buthionine sulfoximine effects on hepatic S-adenosyl-L-methionine metabolism and morphology. The reduction of S-adenosyl-L-methionine-synthetase activity observed after treatment with buthionine sulfoximine and its prevention by glutathione monoethyl ester, as well as the correlation between the activity of this enzyme and glutathione levels, indicate that glutathione plays an important role in maintaining S-adenosyl-L-methionine-synthetase activity in the liver.
Buthionine sulfoximine
Glutathione synthetase
Cite
Citations (98)
Buthionine sulfoximine
Cite
Citations (36)
Experimental modulation of cellular glutathione levels has been used to explore the role of glutathione in cadmium toxicity. Mice treated with buthionine sulfoximine [an effective irreversible inhibitor of γ-glutamylcysteine synthetase (EC 6.3.2.2) that decreases cellular levels of glutathione markedly] were sensitized to the toxic effects of CdC12. Mice pretreated with a sublethal dose of Cd2+ to induce metallothionein synthesis were not sensitized to Cd2+ by buthionine sulfoximine. Mice sensitized to Cd2+ by buthionine sulfoximine were protected against a lethal dose of Cd2+ by glutathione mono isopropyl ester (l-γ-glutamyl-l-cysteinylglycylisopropyl ester), but not by glutathione. These results are in accord with studies that showed that glutathione mono esters (in contrast to glutathione) are efficiently transported into cells and converted intracellularly to glutathione. The findings indicate that intracellular glutathione functions in protection against Cd2+ toxicity, and that this tripeptide provides a first line of defense against Cd2+ before induction of metallothionein synthesis occurs. The experimental approach used here in which cellular levels of glutathione are decreased or increased seems applicable to investigation of other types of metal toxicity and of other glutathione-dependent biological phenomena.— Singhal, R. K.; Anderson, M. E.; Meister, A. Glutathione, a first line of defense against cadmium toxicity. FASEB J. 1: 220-223; 1987.
Buthionine sulfoximine
Metallothionein
Tripeptide
Cite
Citations (389)
Buthionine sulfoximine
Glutathione synthetase
Cite
Citations (898)