logo
    MD-2, a Molecule that Confers Lipopolysaccharide Responsiveness on Toll-like Receptor 4
    2,197
    Citation
    26
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Toll-like receptor 4 (TLR4) is a mammalian homologue of Drosophila Toll, a leucine-rich repeat molecule that can trigger innate responses against pathogens. The TLR4 gene has recently been shown to be mutated in C3H/HeJ and C57BL/10ScCr mice, both of which are low responders to lipopolysaccharide (LPS). TLR4 may be a long-sought receptor for LPS. However, transfection of TLR4 does not confer LPS responsiveness on a recipient cell line, suggesting a requirement for an additional molecule. Here, we report that a novel molecule, MD-2, is requisite for LPS signaling of TLR4. MD-2 is physically associated with TLR4 on the cell surface and confers responsiveness to LPS. MD-2 is thus a link between TLR4 and LPS signaling. Identification of this new receptor complex has potential implications for understanding host defense, as well as pathophysiologic, mechanisms.
    Objective:To investigate the influences of Aβ25-35 on the TLR3 and TLR4 mRNA. Method: NG108-15 cell line was stimulated with Aβ25-35,the supernatant was collected 24 hours later and the inflammatory factors TNF-α and IFN-β were quantitatively measured,the changes in the mRNA expression of TLR3 and TLR4 were detected by real-time PCR. Result:Aβ induced the over-secreting of TNF-α、IFN-β and over-expression of TLR3 and TLR4 mRNA (P 0. 01). Conclusions:Aβ induced the over-secreting of inflammatory factors and over-expression of TLR3 and TLR4,indicating the action of Aβ in causing AD disease might be affiliated with the immune inflammation and the TLRs signaling pathway.
    TLR3
    Citations (0)
    Salmonella enterica serovar Typhimurium (S. Typhimurium) changes the structure of its lipopolysaccharide (LPS) in response to the environment. The two main LPS variants found in S. Typhimurium correspond to LPS with a hepta-acylated lipid A (LPS 430) and LPS with modified phosphate groups on its lipid A (LPS 435). We have previously shown that these modified LPS have a lower capacity than wild type (WT) LPS to induce the production of pro-inflammatory cytokines in mice. Nevertheless, it is not know if LPS 430 and LPS 435 could also subvert the innate immune responses in human cells. In this study, we found that LPS 430 and LPS 435 were less efficient than WT LPS to induce the production of pro-inflammatory cytokines by human monocytes, in addition we found a decreased dimerization of the TLR4/MD-2 complex in response to LPS 430, suggesting that structurally modified LPS are sensed differently than WT LPS by this receptor; however, LPS 430 and 435 induced similar activation of the transcription factors NF-κB p65, IRF3, p38 and ERK1/2 than WT LPS. Microarray analysis of LPS 430- and LPS 435-activated monocytes revealed a gene transcription profile with differences only in the expression levels of microRNA genes compared to the profile induced by WT LPS, suggesting that the lipid A modifications present in LPS 430 and LPS 435 have a moderate effect on the activation of the human TLR4/MD-2 complex. Our results are relevant to understand LPS modulation of immune responses and this knowledge could be useful for the development of novel adjuvants and immunomodulators.
    Lipid A
    Salmonella enterica
    Monocyte
    Sepsis remains one of the most lethal and costly conditions treated in U.S. hospitals, with approximately 50% of cases caused by Gram-negative bacterial infections. Septic shock is induced when lipopolysaccharide (LPS), the main component of Gram-negative outer bacterial membrane, signals through the Toll-like receptor 4 (TLR4) complex. Lethal endotoxemia, a model for septic shock, was induced in WT C57BL6 and TLR4–/– mice by administration of Escherichia coli LPS. WT LPS treated mice showed high morbidity, while PBS treated LPS and treated TLR4–/– mice did not. ANOVA analysis of label-free quantification of longitudinal serum proteome revealed 182 out of 324 proteins in LPS injected WT mice that were significantly changed across four time points (0, 6, 12, and 18 h). No significant changes were identified in the two control groups. From the 182 identified proteins, examples of known sepsis biomarkers were validated by ELISA, which showed similar trends as MS proteomics data. Longitudinal analysis within individual mice produced 3-fold more significantly changed proteins than pair-wise comparison. A subsequent global analysis of WT and TLR4–/– mice identified pathways activated independent of TLR4. These pathways represent possible compensatory mechanisms that allow for control of Gram-negative bacterial infection regardless of host immune status.
    Proteome
    Read the full review for this Faculty Opinions recommended article: The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-kappaB through human toll-like receptor 4.
    Citations (0)
    Abstract The human homologue of Drosophila Toll (hToll), also called Toll-like receptor 4 (TLR4), is a recently cloned receptor of the IL-1/Toll receptor family. Interestingly, the TLR4 gene has been localized to the same region to which the Lps locus (endotoxin unresponsive gene locus) is mapped. To examine the role of TLR4 in LPS responsiveness, we have generated mice lacking TLR4. Macrophages and B cells from TLR4-deficient mice did not respond to LPS. All these manifestations were quite similar to those of LPS-hyporesponsive C3H/HeJ mice. Furthermore, C3H/HeJ mice have, in the cytoplasmic portion of TLR4, a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family. Overexpression of wild-type TLR4 but not the mutant TLR4 from C3H/HeJ mice activated NF-κB. Taken together, the present study demonstrates that TLR4 is the gene product that regulates LPS response.
    Citations (3,373)