logo
    Effects of Halothane Anesthesia on Vasoconstrictor Response to NG-Nitro-L-Arginine Methyl Ester, an Inhibitor of Nitric Oxide Synthesis, in Sheep
    22
    Citation
    0
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    This study tests the hypothesis that halothane-induced inhibition of the endothelium-derived relaxing factor/nitric oxide (EDRF/NO) pathway significantly contributes to cardiovascular performance and thus reduces the vasoconstrictor response to NO synthesis inhibitors in vivo. We determined the effects of the administration of the NO synthesis inhibitor NG-nitro-L-arginine methyl ester (L-NAME) in chronically instrumented, halothane-anesthetized sheep and in awake control animals. Six sheep underwent halothane anesthesia (1.5 vol%) with mechanical ventilation. Five sheep were studied in the awake state with spontaneous breathing. Both groups received a bolus of L-NAME (25 mg/kg), followed 4 h later by L-arginine (300 mg/kg) to reverse the effects of L-NAME. L-NAME administration caused a significant increase in pulmonary and systemic vascular resistance (P < 0.05) in both groups. However, L-NAME produced a sharp increase in mean arterial and pulmonary artery pressures only in the control group, whereas the pressor response in the halothane group was attenuated. Cardiac output, which was significantly lower after L-NAME administration in both groups, increased after L-arginine. The results suggest that halothane does not significantly alter the EDRF/NO-mediated effects on the vasculature but potentiates the cardiac depressant effect of L-NAME.
    Keywords:
    Bolus (digestion)
    Nitroarginine
    Inhibition of nitric oxide (NO) synthase activity by L-NG-Nitroarginine (NO2Arg) in brain preparations is not reversed by dialysis and is enhanced by prolonged preincubation of NO2Arg with the enzyme. By contrast, the weaker inhibition by NO2Arg of macrophage NO synthase is fully reversible. NO2Arg inhibits NO synthase activity in the brain after i.p. administration of 5 or 50 mg/kg. This in vivo inhibition also appears to be irreversible. The potent in vivo inhibition of central NO synthase by NO2Arg may facilitate studies of the physiologic function of NO as a neuronal messenger.
    Nitroarginine
    Citations (368)
    Background The causes of volatile anesthetic-induced cerebral vasodilation include direct effects on smooth muscle and indirect effects via changes in metabolic rate and release of mediators from vascular endothelium and brain parenchyma. The role of nitric oxide and the relative importance of neuronal and endothelial nitric oxide synthase (nNOS and eNOS, respectively) are unclear. Methods Rat brain slices were superfused with oxygenated artificial cerebrospinal fluid. Hippocampal arteriolar diameters were measured using computerized videomicrometry. Vessels were preconstricted with prostaglandin F2alpha (PGF2alpha; halothane group) or pretreated with 7-nitroindazole sodium (7-NINA, specific nNOS inhibitor, 7-NINA + halothane group) or N-nitro-L-arginine methylester (L-NAME; nonselective NOS inhibitor, L-NAME + halothane group) and subsequently given PGF2alpha to achieve the same total preconstriction as in the halothane group. Increasing concentrations of halothane were administered and vasodilation was calculated as a percentage of preconstriction. Results Halothane caused significant, dose-dependent dilation of hippocampal microvessels (halothane group). Inhibition of nNOS by 7-NINA or nNOS + eNOS by L-NAME similarly attenuated halothane-induced dilation at 0.6, 1.6, and 2.6% halothane. The dilation (mean +/- SEM) at 1.6% halothane was 104 +/- 10%, 65 +/- 6%, and 51 +/- 9% in the halothane, 7-NINA + halothane and L-NAME + halothane groups, respectively. The specificity of 7-NINA was confirmed by showing that acetylcholine-induced dilation was not inhibited by 7-NINA but was converted to constriction by L-NAME. Conclusions At clinically relevant concentrations, halothane potently dilates intracerebral arterioles. This dilation is mediated, in part, by neuronally derived nitric oxide. Endothelial NOS does not play a major role in halothane-induced dilation of hippocampal microvessels.
    Nitroarginine
    A series of Nω-nitro-Nω'-substituted guanidines has been prepared as potential inhibitors of the human Nitric Oxide Synthase (NOS) isoforms. The reported utility of aminoguanidine and nitroarginine in iNOS inhibition points to a potential similar utility for analogs of nitro-guanidine. The compound library was tested against the three isoforms of Nitric Oxide Synthase (eNOS, iNOS and nNOS). Several candidates showed excellent activity and good selectivity for nNOS. One particular compound even demonstrated good selectivity for iNOS. The potential usefulness of such selective inhibitors is discussed.
    Guanidine
    Nitroarginine
    Citations (2)
    Exposure of primary cultures of neonatal rat cortical astrocytes to bacterial lipopolysaccharide (LPS) results in the appearance of nitric oxide synthase (NOS) activity. The induction of NOS, which is blocked by actinomycin D, is directly related to the duration of exposure and dose of LPS, and a 2-hr pulse can induce enzyme activity. Cytosol from LPS-treated astrocyte cultures, but not from control cultures, produces a Ca(2+)-independent conversion of L-arginine to L-citrulline that can be completely blocked by the specific NOS inhibitor NG-monomethyl-L-arginine. The induced NOS activity exhibits an apparent Km of 16.5 microM for L-arginine and is dependent on NADPH, FAD, and tetrahydrobiopterin. LPS also induces NOS in C6 glioma cells and microglial cultures but not in cultured cortical neurons. The expression of NOS in astrocytes and microglial cells has been confirmed by immunocytochemical staining using an antibody to the inducible NOS of mouse macrophages and by histochemical staining for NADPH diaphorase activity. We conclude that glial cells of the central nervous system can express an inducible form of NOS similar to the inducible NOS of macrophages. Inducible NOS in glia may, by generating nitric oxide, contribute to the neuronal damage associated with cerebral ischemia and/or demyelinating diseases.
    Nitroarginine
    Neuroglia
    Citations (485)
    Previous reports from our laboratory have shown that ethanol elicits hypotension in female but not in male rats and that this effect of ethanol is estrogen dependent (El-Mass MM and Abdel-Rahman AA. Alcohol Clin Exp Res 23: 624-632, 1999; El-Mass MM and Abdel-Rahman AA. Clin Exp Hypertens 21: 1429-1445, 1999). In the present study, we tested the hypothesis that ethanol lowers blood pressure in female rats via upregulation of the inducible nitric oxide synthase (iNOS) in vascular tissues. The effects of pretreatment with NG-nitro-L-arginine (NOARG; nonselective nitric oxide synthase inhibitor) or aminoguanidine (selective iNOS inhibitor) on hemodynamic responses elicited by intragastric (ig) ethanol were determined in conscious female rats. Changes in vascular (aortic) iNOS protein expression evoked by ethanol in the presence and absence of aminoguanidine were also measured by immunohistochemistry. Compared with control (water treated) female rats, ethanol (1 g/kg ig) elicited hypotension that was associated with a significant increase in the aortic iNOS activity. The hypotensive effect of ethanol was virtually abolished in rats infused with the nitric oxide synthase inhibitor NOARG, suggesting a role for nitric oxide in ethanol hypotension. The inability of ethanol to lower blood pressure in NOARG-treated rats cannot be attributed to the presence of elevated blood pressure in these rats because ethanol produced hypotension when blood pressure was raised to comparable levels with phenylephrine infusion. Selective inhibition of iNOS by aminoguanidine (45 mg/kg ip), which had no effect on baseline blood pressure, abolished both the hypotensive action of subsequently administered ethanol and the associated increases in aortic iNOS content. These findings implicate vascular iNOS, at least partly, in the acute hypotensive action of ethanol in female rats.
    Nitroarginine
    Phenylephrine
    1. In the present study, we have investigated the distribution of nitric oxide synthase in the ferret brain. Nitric oxide synthase was determined biochemically and immunochemically. 2. In the rat brain, the highest nitric oxide synthase activity has been detected in the cerebellum. However, in the ferret brain, the highest activity was found in the striatum and the lowest in the cerebellum and cerebral cortex. The enzymatic activity was localized predominantly in the cytosolic fractions, it was dependent on NADPH and Ca2+, and inhibited by NG-nitro-L-arginine or NG-methyl-L-arginine. 3. Western blot analysis revealed that all regions of the ferret brain contained a 160 kD protein crossreacting with an antibody to nitric oxide synthase purified from the rat cerebellum, and the levels of relative intensity of staining by the antibody correlated with the distribution of nitric oxide synthase activity. 4. These results indicate that the ferret brain contains a nitric oxide synthase similar to the rat brain, but the distribution of enzymatic activity in the ferret brain differs markedly from the rat brain.
    Nitroarginine