Visualization of Slow Axonal Transport in Vivo
96
Citation
43
Reference
10
Related Paper
Citation Trend
Abstract:
In axons, cytoskeletal constituents move by slow transport. However, it remains controversial whether axonal neurofilaments are dynamic structures in which only subunits are transported or whether filaments assemble in the proximal axon and are transported intact as polymers to the axon terminus. To investigate the form neurofilament proteins take during transport, neurons of transgenic mice lacking axonal neurofilaments were infected with a recombinant adenoviral vector encoding epitope-tagged neurofilament M. Confocal and electron microscopy revealed that the virally encoded neurofilament M was transported in unpolymerized form along axonal microtubules. Thus, neurofilament proteins are probably transported as subunits or small oligomers along microtubules, which are major routes for slow axonal transport.Keywords:
Neurofilament
Axoplasmic transport
Abstract The axons of large‐ and intermediate‐diameter myelinated fibers of sural nerves of patients with hereditary motor and sensory neuropathy, type I (HMSN‐I), were previously found to be attenuated relative to their myelin spiral length. We inferred that axonal atrophy might account for secondary segmental demyelination and remyelination. To assess whether the observed axonal atrophy could be explained by a decrease in neurofilaments, we have evaluated the number of neurofilaments, microtubules, and other axon organelles in sural nerves of patients with HMSN‐I. Whereas the density per square micrometer of neurofilaments or microtubules in diseased nerves was not significantly different from that in control specimens, the number of neurofilamets per axon as related to myelin spiral length was significantly less for intermediate and large myelinated fibers in HMSN‐I nerves. The regression lines for the number of microtubules per axon on myelin spiral lengths, were also less steep in HMSN‐I, but the difference did not reach statistical significance. These results indicate that the number of neurofilaments is proportional to axon diameter but significantly below that expected considering myelin spiral length. Decreased neurofilament synthesis, assembly, or transport may underlie the axonal atrophy in HMSN‐I.
Caliber
Neurofilament
Cite
Citations (33)
Analysis of slow axonal transport in the sciatic and primary visual systems of rats with streptozotocin-induced diabetes of 4-6 weeks duration showed impairment of the transport of neurofilament subunits, tubulin, actin, and a 30- and a 60-kDa polypeptide in both systems. The degree of impairment was not uniform. Transport of polypeptide constituents of the slow component b, such as the 30- and 60-kDa polypeptides, appeared to be more severely affected than the transport of constituents of the slow component a, such as neurofilaments. Morphometric analysis of sciatic axons revealed a proximal increase and a distal decrease of axonal cross-sectional area. It is proposed that impairment of axoplasmic transport and changes of axonal size are related. Transport impairment results in a larger number of neurofilaments, microtubules, and other polypeptides in the proximal region of the axon, which increases in size, whereas fewer neurofilaments, microtubules, and other polypeptides reach the distal axons that show a size decrease. Such changes in axonal transport and area are likely to occur in other diabetic animal models and in human diabetes.
Neurofilament
Axoplasmic transport
Cite
Citations (127)
The high molecular weight subunits of neurofilaments, NF-H and NF-M, have distinctively long carboxyl-terminal domains that become highly phosphorylated after newly formed neurofilaments enter the axon. We have investigated the functions of this process in normal, unperturbed retinal ganglion cell neurons of mature mice. Using in vivo pulse labeling with [35S]methionine or [32P]orthophosphate and immunocytochemistry with monoclonal antibodies to phosphorylation-dependent neurofilament epitopes, we showed that NF-H and NF-M subunits of transported neurofilaments begin to attain a mature state of phosphorylation within a discrete, very proximal region along optic axons starting 150 microns from the eye. Ultrastructural morphometry of 1,700-2,500 optic axons at each of seven levels proximal or distal to this transition zone demonstrated a threefold expansion of axon caliber at the 150-microns level, which then remained constant distally. The numbers of neurofilaments nearly doubled between the 100- and 150-microns level and further increased a total of threefold by the 1,200-microns level. Microtubule numbers rose only 30-35%. The minimum spacing between neurofilaments also nearly doubled and the average spacing increased from 30 nm to 55 nm. These results show that carboxyl-terminal phosphorylation expands axon caliber by initiating the local accumulation of neurofilaments within axons as well as by increasing the obligatory lateral spacing between neurofilaments. Myelination, which also began at the 150-microns level, may be an important influence on these events because no local neurofilament accumulation or caliber expansion occurred along unmyelinated optic axons. These findings provide evidence that carboxyl-terminal phosphorylation triggers the radial extension of neurofilament sidearms and is a key regulatory influence on neurofilament transport and on the local formation of a stationary but dynamic axonal cytoskeletal network.
Neurofilament
Axon terminal
Cite
Citations (278)
Neurofilament
Squid giant axon
Growth cone
Axon hillock
Axon terminal
Cite
Citations (34)
The structural role of neurofilaments in the normal axon and the consequences of altered axonal transport of neurofilaments have been extensively studied in large axons. These studies suggest that neurofilament numbers and interneurofilament spacing are major determinants of axonal cross-sectional area. In contrast, in small axons and dendrites, microtubules and membranous organelles appear to be the most closely correlated with size and shape of the cell process. In this study we have examined the effect of impairment in neurofilament transport on small axons, typical of most CNS pathways. Neurofilament transport was impaired by administration of beta,beta'-iminodipropionitrile (IDPN), resulting in proximal accumulation and distal depletion of neurofilaments. The evolution of these changes was studied in the optic nerves of guinea pigs treated with IDPN, 1-35 weeks following intoxication. The effect of this redistribution of neurofilaments on cross-sectional area of small axons was evaluated using quantitative ultrastructural methods. Our results show that with the alteration in neurofilament transport seen with IDPN intoxication, there is a wide spectrum of neurofilament densities, ranging from a 5-fold increase above normal in the proximal axon, to a 5-fold decrease below normal in the distal axon. Although the optic nerve fibers enlarge with the increase in neurofilament content, they do not atrophy significantly with the continued loss of neurofilaments. We conclude that factors other than neurofilament content are capable of maintaining size and shape of these small axons. Candidate organelles include microtubules and membranous organelles and possibly other axonal elements.
Neurofilament
Axoplasmic transport
Cite
Citations (30)
Neurofilament
Axoplasmic transport
Dorsal root ganglion
Cite
Citations (31)
Abstract The number of neurofilaments and microtubules present in nerve fibers was determined for sciatic nerves from adult mice and from rats of three different ages. More microtubules than neurofilaments were found in nonmyelinated fibers; the ratio of tubules/filaments was reversed in myelinated fibers and was found to change with axon caliber independent of the presence of a myelin sheath. A series of regression analyses indicated that axon caliber correlates best with the sum of the number of neurofilaments and microtubules per fiber. This correlation was only slightly better than that for neurofilaments alone. Axon caliber also correlated better with the filament‐tubular material than with the thickness of the myelin sheath. The results were similar for both rats and mice, and age differences were not apparent in the samples of nerves analyzed.
Neurofilament
Caliber
Axoplasmic transport
Cite
Citations (526)
β,β′-Iminodipropionitrile (IDPN) administration prevented normal slow axonal transport of [ 35 S]methionine- or [ 3 H]leucine-labeled proteins in rat sciatic motor axons. Ultrastructural and electrophoretic studies showed that the neurofilament triplet proteins in particular were retained within the initial 5 millimeters of the axons, resulting in neurofilament-filled axonal swellings. Fast anterograde and retrograde axonal transport were not affected. The IDPN thus selectively impaired slow axonal transport. The neurofibrillary pathology in this model is the result of the defective slow transport of neurofilaments.
Neurofilament
Axoplasmic transport
Axonal Degeneration
Cite
Citations (340)
Neurofilament
Caliber
Axoplasmic transport
Cite
Citations (28)
Neurofilament
Microtubule-associated protein
Cite
Citations (51)