The neurotrophic hypothesis: where does it stand?
148
Citation
52
Reference
10
Related Paper
Citation Trend
Abstract:
In the developing peripheral nervous system many neurons die shortly after their axons reach their target fields. This loss is thought to match the number of neurons to the size and requirements of their target fields because altering target field size before innervation affects the number of neurons that survive. The neurotrophic hypothesis provides an explanation for how target fields influence the size of the neuronal populations that innervate them. This hypothesis arose from work on nerve growth factor (NGF), the founder member of the neurotrophin family of secreted proteins. Its principal tenet is that the survival of developing neurons depends on the supply of a neurotrophic factor that is synthesized in limiting amounts in their target fields. The neurotrophic hypothesis has, however, been broadened by the demonstration that multiple neurotrophic factors regulate the survival of certain populations of neurons. For example, some neurons depend on several different neurotrophic factors which may act concurrently or sequentially during target field innervation. In addition, there are aspects of neurotrophin action that do not conform with the classic neurotrophic hypothesis. For example, the dependence of some populations of sensory neurons on particular neurotrophins before significant neuronal death takes place raises the possibility that the supply of these neurotrophins is not limiting for survival at this stage of development. There is also evidence that at stages before and after sensory neurons depend on target-derived neurotrophins for survival, neurotrophins act on at least some sensory neurons by an autocrine route. Yet despite the growing wealth of information on the multiple roles and modes of action of neurotrophic factors, the neurotrophic hypothesis has remained the best explanation for how neuronal target fields in the developing peripheral nervous system regulate their innervation density.Keywords:
Ciliary neurotrophic factor
Neurotrophin-3
Ciliary neurotrophic factor
Neurotrophin-3
Cite
Citations (81)
Neurotrophins are responsible for the survival and outgrowth of nerves within the peripheral and central nervous systems. These factors include brain‐derived neurotrophic factor (BDNF), CNTF, NT 3, and NT4/5. We have previously shown that LCs lie in close proximity to nerves and that several neuropeptides regulate LC function, implying that nerves send regulatory signals to LCs. To evaluate the possibility that LC signal nerves by release of neurotrophins, we examined LC expression of neurotrophins by RT‐PCR. To eliminate the possibility of contaminating keratinocytes in highly enriched LC preparations, we utilized the LC‐like cell lines XS52 (BALB/ c derived) and XS106 (A/J derived) for initial experiments. The RNA obtained was digested with DNase to ensure complete absence of genomic DNA. Several independent RT‐PCRs revealed expression of bands of the expected size for CTNF and NT4/5, but not for BDNF and NT3 in XS106 and XS52 cells. In contrast, the transformed keratinocyte cell line PAM212 expressed BDNF, as well as CTNF and NT4/5. Preliminary experiments with purified LC confirm the expression of CTNF and NT4/5 and also show the expression of BDNF. However, we cannot be sure that BDNF expression is not due to keratinocyte contamination. We conclude that LCs may regulate nerve cells by the release of neurotrophic factors.
Ciliary neurotrophic factor
Neurotrophin-3
Cite
Citations (0)
Objective To study the effects of several neurotrophic factors and growth factors on the survival of human retinal ganglion cells(RGC)in vitro. Methods RGC were isolated from donor eyes and cultured.RGC in cell culture were identified by morphologic criteria and immunocytochemical staining.Various neurotrophic factors and growth factors were added individually to the cultures.Numbers of RGC in wells in which these agents had been added were compared with those from control wells(cultures without supplements). Results No or very few RGC were present in cell cultures containing medium without supplements or those supplemented with neurotrophin 3(NT 3),nerve growth factor (NGF),epidermal growth factor(EGF)amd platelet derived growth factor(PDGF).Numbers of RGC(per 10 fields)in cell cultures containing brain derived neurotrophic factor(BDNF),ciliary neurotrophic factor(CNTF),neurotrophin 4/5(NT 4/5)and basic fibroblast growth factor(bFGF)wer 4.08,1.23,2.63 and 2.65,respectively,significantly more than found in the control cultures. Conclusions BDNF,NT 4/5,bFGF,CNTF improve survival of human RGC in vitro,while NGF,NT 3,EGF and PDGF do not.
Ciliary neurotrophic factor
Neurotrophin-3
Cite
Citations (0)
Although brain-derived neurotrophic factor is the most abundant and widely distributed neurotrophin in the nervous system, reproducible determinations of its levels have been hampered by difficulties in raising suitable monoclonal antibodies. Following immunization of mice with recombinant fish and mammalian brain-derived neurotrophic factor, monoclonal antibodies were generated and used in an immunoassay based on the recognition of two different epitopes. Neither antibody crossreacts with neurotrophin homodimers other than brain-derived neurotrophic factor, although reactivity was detected with brain-derived neurotrophic factor/neurotrophin-3 heterodimers. As both nerve growth factor and neurotrophin-3 are known to affect the development of a variety of neurons expressing the brain-derived neurotrophic factor (bdnf) gene, this assay was used to determine levels in tissues isolated from newborn mice carrying a null mutation in the nerve growth factor (ngf) or the neurotrophin-3 (nt3) gene. Marked differences were observed between mutants and wild-type littermates in the PNS, but not in the CNS, suggesting that neither nerve growth factor nor neurotrophin-3 is a unique regulator of brain-derived neurotrophic factor levels in the newborn mouse CNS.
Neurotrophin-3
Ciliary neurotrophic factor
Cite
Citations (134)
Neurotrophin-3
Environmental Enrichment
Ciliary neurotrophic factor
Cite
Citations (0)
Cultured astrocytes are known to possess a range of neurotrophic activities in culture. In order to examine which factors may be responsible for these activities, we have examined the expression of the genes for four known neurotrophic factors-ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3)-in purified astrocyte cultures derived from neonatal rat hippocampus. Hippocampal astrocytes were found to express mRNA for three neurotrophic factors-CNTF, NGF and NT3-at significantly higher levels than other cultured cell types or cell lines examined. BDNF messenger RNA (mRNA), however, was undetectable in these astrocytes. The levels of CNTF, NGF and NT3 mRNA in astrocytes were largely unaffected by their degree of confluency, while serum removal caused only a transient decrease in mRNA levels, which returned to basal levels within 48 h. Astrocyte-derived CNTF was found to comigrate with recombinant rat CNTF at 23 kD on a Western blot. Immunocytochemical analysis revealed strong CNTF immunoreactivity in the cytoplasm of astrocytes, weak staining in the nucleus, but no CNTF at the cell surface. NGF and NT3 were undetectable immunocytochemically. CNTF-like activity, as assessed by bioassay on ciliary ganglion neurons, was found in the extract of cultured astrocytes but not in conditioned medium, whereas astrocyte-conditioned medium supported survival of dorsal root ganglion neurons but not ciliary or nodose ganglion neurons. This conditioned medium activity was neutralized with antibodies to NGF. Astrocyte extract also supported survival of dorsal root ganglion and nodose ganglion neurons, but these activities were not blocked by anti-NGF. Part, but not all, of the activity in astrocyte extracts which sustained nodose ganglion neurons could be attributed to CNTF.
Ciliary neurotrophic factor
Ciliary ganglion
Nodose Ganglion
Neurotrophin-3
Dorsal root ganglion
Cite
Citations (197)
Ciliary neurotrophic factor
Axoplasmic transport
Neurotrophin-3
Peripheral nerve injury
Cite
Citations (31)
Abstract A reproducible neuronal degeneration induced by nerve lesion in neonatal rats or mice provides a convenient in vivo assay for testing the survival‐promoting activity of putative growth factors on motoneurons. The goal of this study was to compare the rescue effects of the four known neurotrophins [nerve growth factor (NGF), brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT‐3) and neurotrophin‐4 (NT‐4)] and two of the cytokines [ciliary neurotrophic factor (CNTF) and leukaemia inhibitory factor (LIF)] in one particular experimental model of spinal motoneuron degeneration at two different survival times. The sciatic nerve was cut in neonatal rats and the factors were applied onto the nerve stump; bovine serum albumin was used in controls. Simultaneous application of the retrograde tracer fluoro‐gold made it possible to count motoneurons specifically in the sciatic pool. One week after lesion, the neurotrophins BDNF, NT‐3 and NT‐4, but not NGF, equally enhanced motoneuron survival compared to controls; their effects were significantly better than those of the cytokines. However, the rescue from cell death was only transitory because a great number of the motoneurons died during the second week after nerve lesion. Additional BDNF and/or CNTF supplied by repeated subcutaneous injections (1 mg/ml) over 2 weeks could not prevent this delayed motoneuron loss. These results suggest that still other factors or alternative routes of administration may be required for permanent rescue of the lesioned immature motoneurons.
Ciliary neurotrophic factor
Neurotrophin-3
Cite
Citations (149)
The development and maintenance of the nervous system depends on proteins known as neurotrophic factors. Although the prototypical neurotrophic factor, nerve growth factor (NGF), has been intensively studied for decades, the discovery and characterization of additional such factors has been impeded by their low abundance. Sequence homologies between NGF and the recently cloned brain-derived neurotrophic factor (BDNF) were used to design a strategy that has now resulted in the cloning of a gene encoding a novel neurotrophic factor, termed neurotrophin-3 (NT-3). The distribution of NT-3 messenger RNA and its biological activity on a variety of neuronal populations clearly distinguish NT-3 from NGF and BDNF, and provide compelling evidence that NT-3 is an authentic neurotrophic factor that has its own characteristic role in vivo.
Ciliary neurotrophic factor
Neurotrophin-3
Cite
Citations (1,262)
Three neurotrophic factors, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF) form noncovalent homodimers in solution. Since they are highly homologous proteins, it seemed probable that two monomers of these proteins might associate together to form a heterodimer. This was tested by denaturing the two different proteins together in 6 M guanidine HCl and refolding them in phosphate-buffered saline. When the refolded mixture of BDNF and NT-3 was subjected to Mono S cation exchange chromatography, a new peak was observed eluting between NT-3 and BDNF, which accounted for about 30% of the protein used. This new protein species migrated as a single band upon native gel electrophoresis with mobility between that of the NT-3 homodimer and the BDNF homodimer, indicating that a complex had been formed. Sedimentation equilibrium data show that the dissociation constant of this heterodimer is < 3 x 10(-10) M. The heterodimer was stable upon incubation at 37 degrees C in phosphate-buffered saline over 11 days. Having determined that the heterodimer is highly stable, it was subjected to various biological assays. Autophosphorylation assay using TrkB receptor showed that the heterodimer is indistinguishable from the BDNF or NT-3 homodimer in the ability to induce phosphorylation of the receptor. It was also indistinguishable from the homodimers in the neurotrophic activity using chick dorsal root ganglion explant. In the sympathetic neuron survival assay, the heterodimer behaved more similarly to NT-3, whereas in the dopamine uptake assay, it was intermediate between the two homodimers. In addition, the heterodimer was shown to be retrogradely transported in the dorsal root ganglion neurons. A heterodimer between NGF and BDNF is formed but much less effectively than the NT-3.BDNF heterodimer, and it is not stable even at 4 degrees C. These results indicate that BDNF and NT-3 have an intersubunit contact surface for dimerization resembling each other's but different from the contact surface of NGF.
Neurotrophin-3
Ciliary neurotrophic factor
Cite
Citations (44)