Genome size, GC percentage and 5mC level in the Indonesian coelacanth Latimeria menadoensis
Daisy Monica MakapeduaMarco BaruccaMarikò ForconiN. AntonucciDavide BizzaroAdolfo AmiciMaria Rita CarradoriEttore OlmoAdriana Canapa
13
Citation
36
Reference
10
Related Paper
Citation Trend
Keywords:
Living fossil
Genome size
Lineage (genetic)
Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole-genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in the human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, i.e., paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.
Lineage (genetic)
Cite
Citations (469)
The terrestrial pulmonate mollusks were found to have the significantly larger genomes than the aquatic pulmonates. Being shown in the independent phylogenetic branch, this phenomenon suggests that the previously observed genome enlargement in the vertebrate land pioneers (amphibians and lungfishes) was not casual. As in the vertebrates, the larger molluskan genomes are also more GC-rich. Key words: genome size, genome evolution, cytoecology, noncoding DNA, genome base composition, flow cytometry.
Genome size
Cite
Citations (3)
Previous studies suggested that there were two rounds of genome duplication early in vertebrate history(the 2R hypothesis).And recent phylogenetic and comparative data suggested that an additional whole genome duplication occurred in the stem lineage of ray-finned(actinopterygian) fishes,but not in that of the land vertebrates,namely the fish-specific genome duplication(the 3R hypothesis).The genome duplication issues are intriguing in organism evolutionary research currently.And the role of genome duplication in evolution are still controversial.The teleost fish is composed of more than half of extant vertebrate species and displays remarkable variation in morphological and physiological adaptations.The genomic complexity of the teleosts might be the reason for their evolutionary success and astonishing biological diversity.
Lineage (genetic)
Comparative Genomics
Cite
Citations (0)
Chordate
Body plan
Lineage (genetic)
Cite
Citations (23)
It has been proposed that more than 450 million years ago, two successive whole genome duplications took place in a marine chordate lineage before leading to the common ancestor of vertebrates. A precise reconstruction of these founding events would provide a framework to better understand the impact of these early whole genome duplications on extant vertebrates.We reconstruct the evolution of chromosomes at the beginning of vertebrate evolution. We first compare 61 extant animal genomes to reconstruct the highly contiguous order of genes in a 326-million-year-old ancestral Amniota genome. In this genome, we establish a well-supported list of duplicated genes originating from the two whole genome duplications to identify tetrads of duplicated chromosomes. From this, we reconstruct a chronology in which a pre-vertebrate genome composed of 17 chromosomes duplicated to 34 chromosomes and was subject to seven chromosome fusions before duplicating again into 54 chromosomes. After the separation of the lineage of Gnathostomata (jawed vertebrates) from Cyclostomata (extant jawless fish), four more fusions took place to form the ancestral Euteleostomi (bony vertebrates) genome of 50 chromosomes.These results firmly establish the occurrence of two whole genome duplications in the lineage that precedes the ancestor of vertebrates, resolving in particular the ambiguity raised by the analysis of the lamprey genome. This work provides a foundation for studying the evolution of vertebrate chromosomes from the standpoint of a common ancestor and particularly the pattern of duplicate gene retention and loss that resulted in the gene composition of extant vertebrate genomes.
Lineage (genetic)
Synteny
Amniote
Ancestor
Chordate
Cite
Citations (177)
Fishes possess both the largest and smallest vertebrate genomes, but the evolutionary significance of this variation is unresolved. The present study provides new genome-size estimates for more than 500 species, with a focus on the cartilaginous and ray-finned fishes. These results confirm that genomes are smaller in ray-finned than in cartilaginous fishes, with the exception of polyploids, which account for much genome-size variation in both groups. Genome-size diversity in ray-finned fishes is not related to metabolic rate, but is positively correlated with egg diameter, suggesting linkages to the evolution of parental care. Freshwater and other eurybiotic fishes have larger genomes than their marine and stenobiotic counterparts. Although genome-size diversity among the fishes appears less clearly linked to any single biological correlate than in the birds, mammals, or amphibians, this study highlights several particularly variable taxa that are suitable for further study.
Genome size
Cite
Citations (164)
Lineage (genetic)
Cite
Citations (11)
Abstract Knowledge of the structure of ancestral genomes provides the basis of a new framework to better represent and interpret results from genomic and evolutionary studies. Because these ancestors lived tens of hundreds of million years ago, this knowledge will inevitably take the form of abstract representations, reconstructed on the basis both of experimental evidence collected on extant genomes and of our understanding of evolutionary processes. This is the field of Paleogenomics, a young discipline that is providing an increasingly precise picture of our ancestral vertebrate genomes based on cytogenetic data, genome sequences and new algorithmic developments. Many recent studies have focused on the ancestral placental mammal and teleost fish genomes, although the outlines of even more distant pre‐vertebrate ancestors are being reported. BioEssays 30:122–134, 2008. © 2008 Wiley Periodicals, Inc.
Mist
Cite
Citations (43)
Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages.
Retrotransposon
Lineage (genetic)
Genome size
Horizontal Gene Transfer
Cite
Citations (343)
Lineage (genetic)
Evolution of mammals
Cite
Citations (11)