Epigenetic Modulation of miR-122 Facilitates Human Embryonic Stem Cell Self-Renewal and Hepatocellular Carcinoma Proliferation
64
Citation
50
Reference
10
Related Paper
Citation Trend
Abstract:
The self-renewal capacity ascribed to hESCs is paralleled in cancer cell proliferation, suggesting that a common network of genes may facilitate the promotion of these traits. However, the molecular mechanisms that are involved in regulating the silencing of these genes as stem cells differentiate into quiescent cellular lineages remain poorly understood. Here, we show that a differentiated cell specific miR-122 exemplifies this regulatory attribute by suppressing the translation of a gene, Pkm2, which is commonly enriched in hESCs and liver cancer cells (HCCs), and facilitates self-renewal and proliferation. Through a series of gene expression analysis, we show that miR-122 expression is highly elevated in quiescent human primary hepatocytes (hPHs) but lost or attenuated in hESCs and HCCs, while an opposing expression pattern is observed for Pkm2. Depleting hESCs and HCCs of Pkm2, or overexpressing miR-122, leads to a common deficiency in self-renewal and proliferation. Likewise, during the differentiation process of hESCs into hepatocytes, a reciprocal expression pattern is observed between miR-122 and Pkm2. An examination of the genomic region upstream of miR-122 uncovered hyper-methylation in hESCs and HCCs, while the same region is de-methylated and occupied by a transcription initiating protein, RNA polymerase II (RNAPII), in hPHs. These findings indicate that one possible mechanism by which hESC self-renewal is modulated in quiescent hepatic derivatives of hESCs is through the regulatory activity of a differentiated cell-specific miR-122, and that a failure to properly turn "on" this miRNA is observed in uncontrollably proliferating HCCs.Keywords:
HCCS
MiR-122
HCCS
Epigenesis
Cite
Citations (0)
Hepatic fibrosis represents a complex response to chronic liver injury. Recent studies revealed micro RNAs as important and tissue-specific gene-regulatory mediators, associated with distinct diseases. MiR-122 is a liver-specific micro RNA (Landgraf et al. 2007) and was shown to be differenzially expressed in hepatocellular carcinoma (Gramantieri et al. 2007).
MiR-122
CCL4
Cite
Citations (0)
Epigenesis
Cite
Citations (9)
Accumulated studies showed that numerous microRNAs (miRNAs) were aberrantly expressed in human intrahepatic cholangiocarcinoma (ICC) and contributed to the tumorigenic processes. However, whether miR-129-2-3p is implicated in the ICC initiation and progression is still limited. Here, the results revealed that miR-129-2-3p expression was notably decreased in ICC tissues and cell lines, and that a low miR-129-2-3p expression was obviously associated with distant metastasis and clinical stage. Exogenous miR-129-2-3p expression evidently repressed the proliferative and invasive abilities of ICC cells. Mechanistic studies indicated that Wild-type p53-induced phosphatase 1 (Wip1) was a direct target gene for miR-129-2-3p in ICC cells. Furthermore, silencing Wip1 expression mimicked the suppressive effects of miR-129-2-3p upregulation on ICC cells. Interestingly, reintroduction of Wip1 expression partially abolished the miR-129-2-3p -reduced cell proliferation and invasion in ICC. Moreover, ectopic miR-129-2-3p expression hindered the ICC tumor growth in vivo. To the best of our knowledge, it is the first time to reveal that miR-129-2-3p plays a crucial role in tumor suppression in ICC pathogenesis through directly targeting Wip1. These results will aid in elucidating the roles of miR-129-2-3p in ICC, and suggest that this miRNA may provide a potential target for the treatment of ICC.
Ectopic expression
Intrahepatic Cholangiocarcinoma
Pathogenesis
Cite
Citations (26)
Many studies have shown that microRNA expression in cancer may be regulated by epigenetic events. Recently, we found that in lung cancer miR-212 was strongly down-regulated. However, mechanisms involved in the regulation of miR-212 expression are unknown. Therefore, we addressed this point by investigating the molecular mechanisms of miR-212 silencing in lung cancer. We identified histone modifications rather than DNA hypermethylation as epigenetic events that regulate miR-212 levels in NSCLC. Moreover, we found that miR-212 silencing in vivo is closely associated with the severity of the disease.
Cancer Epigenetics
Epigenomics
Cite
Citations (78)
MicroRNAs (miRNAs) have been implicated in the orchestration of diverse cellular processes including differentiation, proliferation, and apoptosis and are believed to play pivotal roles as oncogenes and tumor suppressors. miR-122, a liver specific miRNA, is significantly down-regulated in most hepatocellular carcinomas (HCCs) but its role in tumorigenesis remains poorly understood. Here we identify AKT3 as a novel and direct target of miR-122. Restoration of miR-122 expression in HCC cell lines decreases AKT3 levels, inhibits cell migration and proliferation, and induces apoptosis. These anti-tumor phenotypes can be rescued by reconstitution of AKT3 expression indicating the essential role of AKT3 in miR-122 mediated HCC transformation. In vivo, restoration of miR-122 completely inhibited xenograft growth of HCC tumor in mice. Our data strongly suggest that miR-122 is a tumor suppressor that targets AKT3 to regulate tumorigenesis in HCCs and a potential therapeutic candidate for liver cancer.
HCCS
AKT3
MiR-122
Cite
Citations (89)
The mitochondrion is emerging as a key organelle in stem cell biology, acting as a regulator of stem cell pluripotency and differentiation. In this study we sought to understand the effect of mitochondrial complex III inhibition during neuronal differentiation of mouse embryonic stem cells. When exposed to antimycin A, a specific complex III inhibitor, embryonic stem cells failed to differentiate into dopaminergic neurons, maintaining high Oct4 levels even when subjected to a specific differentiation protocol. Mitochondrial inhibition affected distinct populations of cells present in culture, inducing cell loss in differentiated cells, but not inducing apoptosis in mouse embryonic stem cells. A reduction in overall proliferation rate was observed, corresponding to a slight arrest in S phase. Moreover, antimycin A treatment induced a consistent increase in HIF-1α protein levels. The present work demonstrates that mitochondrial metabolism is critical for neuronal differentiation and emphasizes that modulation of mitochondrial functions through pharmacological approaches can be useful in the context of controlling stem cell maintenance/differentiation.
Cell potency
Rex1
Cite
Citations (79)
Hepatocellular carcinoma (HCC) is associated with poor survival for patients and few effective treatment options, raising the need for novel therapeutic strategies. MicroRNAs (miRNAs) play important roles in tumor development and show deregulated patterns of expression in HCC. Because of the liver's unique affinity for small nucleic acids, miRNA-based therapy has been proposed in the treatment of liver disease. Thus, there is an urgent need to identify and characterize aberrantly expressed miRNAs in HCC. In our study, we profiled miRNA expression changes in de novo liver tumors driven by MYC and/or RAS, two canonical oncogenes activated in a majority of human HCCs. We identified an up-regulated miRNA megacluster comprised of 53 miRNAs on mouse chromosome 12qF1 (human homolog 14q32). This miRNA megacluster is up-regulated in all three transgenic liver models and in a subset of human HCCs. An unbiased functional analysis of all miRNAs within this cluster was performed. We found that miR-494 is overexpressed in human HCC and aids in transformation by regulating the G1 /S cell cycle transition through targeting of the Mutated in Colorectal Cancer tumor suppressor. miR-494 inhibition in human HCC cell lines decreases cellular transformation, and anti-miR-494 treatment of primary MYC-driven liver tumor formation significantly diminishes tumor size.Our findings identify a new therapeutic target (miR-494) for the treatment of HCC.
Liver Cancer
Cite
Citations (109)
Epigenesis
Cancer Epigenetics
Cite
Citations (34)