Expression and prognostic value of estrogen receptor β in patients with triple-negative and triple-positive breast cancer
16
Citation
19
Reference
10
Related Paper
Citation Trend
Abstract:
The aim of the present study was to investigate the expression of estrogen receptor β (ERβ) in triple-negative and triple-positive breast cancer patients, and evaluate its utility as a prognostic factor. Between January 2000 and December 2010, primary tumor tissue samples were collected from 234 subjects, including 107 triple-negative and 127 triple-positive breast cancer patients. The samples were embedded in paraffin and immunohistochemical staining was conducted to determine the expression levels of ERβ. The Kaplan-Meier method was used to analyze patient survival rates. ERβ expression was observed in 38/107 patients (35.5%) with triple-negative breast cancer and 63/127 patients (49.6%) with triple-positive breast cancer. The ERβ expression rate was significantly decreased in the patients with triple-negative breast cancer, as compared with those with triple-positive breast cancer (P=0.03). Analysis of the survival rates indicated that patients with triple-negative breast cancer and positive ERβ expression exhibited poor disease progression-free survival (DFS) compared with those with negative ERβ expression (P=0.021). However, no statistically significant difference was observed in the DFS between the triple-positive breast cancer patients with positive and negative ERβ expression. Therefore, the expression of ERβ varies between triple-negative and triple-positive breast cancer patients. In addition, positive expression of ERβ indicates a poor prognosis in triple-negative breast cancer patients; however, this is not the case for triple-positive breast cancer patients.Keywords:
Triple-negative breast cancer
Progesterone receptor
Renal cell carcinoma (RCC) is one of the most common urinary tumors. Previous studies have demonstrated that microRNA (miR)‑181a‑5p has an important role in numerous types of cancer. However, the function of miR‑181a‑5p in RCC remains unknown. In the present study, the expression levels of miR‑181a‑5p in RCC tissues and cell lines were investigated using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. The results of the RT‑qPCR analyses suggested that the expression of miR‑181a‑5p was upregulated in RCC tissues and cells lines compared with adjacent normal renal tissues and normal renal cell lines. Furthermore, the effect of miR‑181a‑5p on cell proliferation, migration, invasion and apoptosis was investigated in the present study. Overexpression of miR‑181a‑5p was revealed to suppress the apoptosis of 786‑O and ACHN cells, in addition to enhancing the proliferation, migration and invasion abilities of 786‑O and ACHN cells in vitro, thus suggesting that miR‑181a‑5p may function as an oncogene in RCC. However, further studies are required to investigate the underlying mechanism of miR‑181a‑5p and its potential role as a biomarker for early detection and prognosis, in addition to as a therapeutic target in RCC.
Cite
Citations (9)
Aminoacylase 1 (ACY1) is important for regulating the proliferation of numerous types of cancer. However, the expression and mechanisms underlying the function of ACY1 in colorectal cancer remain unclear. In order to investigate the expression and function of ACY1 in colorectal cancer, tumor tissue and blood samples were collected for analysis from 132 patients diagnosed with colorectal cancer. Reverse transcription-quantitative polymerase chain reaction analysis and western blotting identified significantly increased expression of ACY1 mRNA in colorectal tumor tissue (P<0.05 vs. adjacent normal tissue) and notably increased ACY1 protein levels. This ACY1 mRNA expression was found to be positively correlated with tumor stage. In addition, plasma ACY1 concentration was increased in patients with colorectal cancer compared with healthy controls. Furthermore, in vitro knockdown of ACY1 in human colorectal cancer HT-29 cells was shown to inhibit proliferation and increase apoptosis. This effect was found to be associated with the activation of ERK1 and TGF-β1 signaling. In conclusion, the results of the present study suggest that ACY1 promotes tumor progression, and thus may be a potential target for the diagnosis and treatment of colorectal cancer.
Expression (computer science)
Cite
Citations (15)
Cite
Citations (26)
Cite
Citations (9)
The present study aimed to evaluate the effect of OCT3/4 on the invasion and metastasis ability of gastric cancer. First, the expression level of OCT3/4 was detected in gastric cancer tissues of different tumor‑node‑metastasis stages. Furthermore, the correlation between the expression of OCT3/4 and the invasion ability of gastric cancer cells, and the probable regulatory mechanism were observed by RNA interference of OCT3/4 in gastric cancer cell strain MKN28, so as to provide the molecular mechanism for the occurrence and development of gastric cancer. The present study found the expression of OCT3/4 in gastric carcinoma tissues (22.56±8.72%) was markedly higher compared with that in para‑cancer tissue (1.12±0.18%) (P<0.01). The expression of OCT3/4 was associated with the infiltration degree, and demonstrated an increasing tendency from Tis‑T4 stages or from N0‑N3. The expression of OCT3/4 in M0 tissues was markedly lower than that in M1 tissues (P<0.01). The level of OCT3/4 was markedly decreased following transfection with OCT3/4 small interfering (si)RNA (P<0.01). The number of cell clones was reduced in a dose‑dependent manner following transfection with increasing levels of siRNA, and the number of cells that permeated through the filter membrane was also decreased. It may be concluded that the expression of OCT3/4 increases along with the degree of the infiltration and metastasis of gastric carcinoma, and that OCT3/4 siRNA inhibits the invasion of gastric carcinoma cells.
Gastric carcinoma
Expression (computer science)
Cite
Citations (1)
The expression of microRNA-203 (miR-203) in esophageal squamous cell carcinoma (ESCC) tissues is remarkably lower than that in non‑ESCC tissues. We investigated how miR-203 could influence the development of ESCC cells. Our analyses revealed that miR-203 inhibited the migration and invasion of ESCC cells. Genome-wide gene expression data and target site inhibition assays showed that miR-203 appears to directly regulate LIM and SH3 protein 1 (LASP1). The knockdown of LASP1 resulted in inhibition of the migration and invasion of ESCC cells. Our results suggest that miR-203 and its target LASP1, may be associated with the progression of ESCC. In clinical ESCC specimens, the expression levels of miR-203, which were lower compared to those in normal tissues, were inversely correlated with the mRNA expression levels of LASP1. Moreover, we found that there was a significant correlation between the expression levels of miR-203 and the relapse‑free survival. The identification of a cancer network regulated by miR-203 could provide new insights into the potential mechanisms of the progression of ESCC.
Cite
Citations (66)
This study aimed to determine whether manipulation of the microRNA‑200 (miR‑200) family could influence colon adenocarcinoma cell behavior. The miR‑200 family has a significant role in tumor suppression and functions as an oncogene. In vitro studies on gain and loss of function with small interfering RNA demonstrated that the miR‑200 family could regulate RASSF2 expression. Knockdown of the miR‑200 family in the HT‑29 colon cancer cell line increased KRAS expression but decreased signaling in the MAPK/ERK signaling pathway through reduced ERK phosphorylation. Increased expression of the miR‑200 family in the CCD‑841 colon epithelium cell line increased KRAS expression and led to increased signaling in the MAPK/ERK signaling pathway but increased ERK phosphorylation. Functionally, knockdown of the miR‑200 family led to decreased cell proliferation in the HT‑29 cells; therefore, increased miR‑200 family expression could increase cell proliferation in the CCD‑841 cell line. The present study included a large paired miR array dataset (n=632), in which the miR‑200 family was significantly found to be increased in colon cancer when compared with normal adjacent colon epithelium. In a miR‑seq dataset (n=199), the study found that miR‑200 family expression was increased in localized colon cancer compared with metastatic disease. Decreased expression was associated with poorer overall survival. The miR‑200 family directly targeted RASSF2 and was inversely correlated with RASSF2 expression (n=199, all P<0.001). Despite the well‑defined role of the miR‑200 family in tumor suppression, the present findings demonstrated a novel function of the miR‑200 family in tumor proliferation.
Cite
Citations (41)
Tissue microarray
Univariate analysis
Cite
Citations (28)
The aim of this work was to analyze methylation of the promoter sites of the ESR1 and PGR genes and to determine correlations with immunohistochemical expression of estrogen and progesterone receptors in ductal and lobular breast cancers. An observational, descriptive, molecular study was conducted on 20 ductal and 20 lobular breast cancer samples with immunohistochemical determination of estrogen and progesterone receptor expression. The methylation analysis of ESR1 and PGR promoter sites was carried-out by methylation-specific PCR. For correlation analysis, Kendall's tau coefficient was determined. Positive correlations were found between estrogen and progesterone receptors, estrogen receptor and unmethylated progesterone receptor, progesterone receptor, and unmethylated progesterone receptor. Negative correlations were found between estrogen receptor and methylated progesterone receptor, progesterone receptor and methylated progesterone receptor, methylated and unmethylated estrogen receptor, and methylated and unmethylated progesterone receptor. The results suggest that methylation of promoter sites of ESR1 and PGR is a relatively uncommon event in ductal and lobular breast cancer, and also suggest that the determination of epigenetic states of ESR1 and PGR could represent an alternative or complement to the histopathological expression analysis.
Progesterone receptor
Estrogen receptor alpha
Estrogen receptor beta
Cite
Citations (8)
Triple-negative breast cancer shows worse outcome compared with other subtypes of breast cancer. The discovery of dysregulated microRNAs and their roles in the progression of triple-negative breast cancer provide novel strategies for the treatment of patients with triple-negative breast cancer. In this study, we identified the significant reduction of miR-133 in triple-negative breast cancer tissues and cell lines. Ectopic overexpression of miR-133 suppressed the proliferation, colony formation, and upregulated the apoptosis of triple-negative breast cancer cells. Mechanism study revealed that the YES Proto-Oncogene 1 was a target of miR-133. miR-133 bound the 3′-untranslated region of YES Proto-Oncogene 1 and decreased the level of YES Proto-Oncogene 1 in triple-negative breast cancer cells. Consistent with miR-133 downregulation, YES1 was significantly increased in triple-negative breast cancer, which was inversely correlated with the level of miR-133. Restoration of YES Proto-Oncogene 1 attenuated the inhibitory effects of miR-133 on the proliferation and colony formation of triple-negative breast cancer cells. Consistent with the decreased expression of YES Proto-Oncogene 1, overexpression of miR-133 suppressed the phosphorylation of YAP1 in triple-negative breast cancer cells. Our results provided novel evidence for the role of miR-133/YES1 axis in the development of triple-negative breast cancer, which indicated miR-133 might be a potential therapeutic strategy for triple-negative breast cancer.
Triple-negative breast cancer
Ectopic expression
Cite
Citations (13)