logo
    Nucleic acid and protein factors involved in Escherichia coli polynucleotide phosphorylase function on RNA
    13
    Citation
    54
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    Polynucleotide phosphorylase
    Degradosome
    Exoribonuclease
    The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5'-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5' end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5' double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5' end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5' fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript.
    Polynucleotide phosphorylase
    Exoribonuclease
    Degradosome
    Ribonuclease III
    RNase PH
    Cold-shock domain
    RNase MRP
    Citations (40)
    Exoribonuclease
    Degradosome
    Polynucleotide phosphorylase
    RNA Helicase A
    Exosome complex
    RNase MRP
    Nuclease
    RNase PH
    RNase H
    RNA Silencing
    Citations (14)
    The molecular mechanism of mRNA degradation in the chloroplast consists of sequential events including endonucleolytic cleavage, the addition of poly(A)-rich sequences to the endonucleolytic cleavage products, and exonucleolytic degradation by polynucleotide phosphorylase (PNPase). In Escherichia coli,polyadenylation is performed mainly by poly(A)-polymerase (PAP) I or by PNPase in its absence. While trying to purify the chloroplast PAP by following in vitro polyadenylation activity, it was found to copurify with PNPase and indeed could not be separated from it. Purified PNPase was able to polyadenylate RNA molecules with an activity similar to that of lysed chloroplasts. Both activities use ADP much more effectively than ATP and are inhibited by stem-loop structures. The activity of PNPase was directed to RNA degradation or polymerization by manipulating physiologically relevant concentrations of Piand ADP. As expected of a phosphorylase, Pi enhanced degradation, whereas ADP inhibited degradation and enhanced polymerization. In addition, searching the completeArabidopsis genome revealed several putative PAPs, none of which were preceded by a typical chloroplast transit peptide. These results suggest that there is no enzyme similar to E. coli PAP I in spinach chloroplasts and that polyadenylation and exonucleolytic degradation of RNA in spinach chloroplasts are performed by one enzyme, PNPase.
    Polynucleotide phosphorylase
    Exoribonuclease
    Degradosome
    DNA polymerase I
    Klenow fragment
    Polynucleotide phosphorylase (PNPase) is an exoribonuclease that catalyzes the processive phosphorolytic degradation of RNA from the 3'-end. The enzyme catalyzes also the reverse reaction of polymerization of nucleoside diphosphates that has been implicated in the generation of heteropolymeric tails at the RNA 3'-end. The enzyme is widely conserved and plays a major role in RNA decay in both Gram-negative and Gram-positive bacteria. Moreover, it participates in maturation and quality control of stable RNA. PNPase autoregulates its own expression at post-transcriptional level through a complex mechanism that involves the endoribonuclease RNase III and translation control. The activity of PNPase is modulated in an intricate and still unclear manner by interactions with small molecules and recruitment in different multiprotein complexes. Not surprisingly, given the wide spectrum of PNPase substrates, PNPase-defective mutations in different bacterial species have pleiotropic effects and perturb the execution of genetic programs involving drastic changes in global gene expression such as biofilm formation, growth at suboptimal temperatures, and virulence.
    Exoribonuclease
    Polynucleotide phosphorylase
    Endoribonuclease
    Degradosome
    Exosome complex
    Citations (46)
    The mechanism of RNA degradation in Escherichia coli involves endonucleolytic cleavage, polyadenylation of the cleavage product by poly(A) polymerase, and exonucleolytic degradation by the exoribonucleases, polynucleotide phosphorylase (PNPase) and RNase II. The poly(A) tails are homogenous, containing only adenosines in most of the growth conditions. In the chloroplast, however, the same enzyme, PNPase, polyadenylates and degrades the RNA molecule; there is no equivalent for the E. coli poly(A) polymerase enzyme. Because cyanobacteria is a prokaryote believed to be related to the evolutionary ancestor of the chloroplast, we asked whether the molecular mechanism of RNA polyadenylation in the Synechocystis PCC6803 cyanobacteria is similar to that in E. coli or the chloroplast. We found that RNA polyadenylation in Synechocystis is similar to that in the chloroplast but different from E. coli. No poly(A) polymerase enzyme exists, and polyadenylation is performed by PNPase, resulting in heterogeneous poly(A)-rich tails. These heterogeneous tails were found in the amino acid coding region, the 5' and 3' untranslated regions of mRNAs, as well as in rRNA and the single intron located at the tRNA(fmet). Furthermore, unlike E. coli, the inactivation of PNPase or RNase II genes caused lethality. Together, our results show that the RNA polyadenylation and degradation mechanisms in cyanobacteria and chloroplast are very similar to each other but different from E. coli.
    Polynucleotide phosphorylase
    Exoribonuclease
    Degradosome
    DNA polymerase I
    RNase PH
    Citations (98)
    Polyadenylation of mRNA has been shown to target the RNA molecule for rapid exonucleolytic degradation in bacteria. To elucidate the molecular mechanism governing this effect, we determined whether the Escherichia coli exoribonuclease polynucleotide phosphorylase (PNPase) preferably degrades polyadenylated RNA. When separately incubated with each molecule, isolated PNPase degraded polyadenylated and non‐polyadenylated RNAs at similar rates. However, when the two molecules were mixed together, the polyadenylated RNA was degraded, whereas the non‐polyadenylated RNA was stabilized. The same phenomenon was observed with polyuridinylated RNA. The poly(A) tail has to be located at the 3′ end of the RNA, as the addition of several other nucleotides at the 3′ end prevented competition for polyadenylated RNA. In RNA‐binding experiments, E. coli PNPase bound to poly(A) and poly(U) sequences with much higher affinity than to poly(C) and poly(G). This high binding affinity defines poly(A) and poly(U) RNAs as preferential substrates for this enzyme. The high affinity of PNPase for polyadenylated RNA molecules may be part of the molecular mechanism by which polyadenylated RNA is preferentially degraded in bacterial cells.
    Polynucleotide phosphorylase
    Exoribonuclease
    Degradosome
    Post-transcriptional modification
    The Bacillus subtilis genome encodes four 3' exoribonucleases: polynucleotide phosphorylase (PNPase), RNase R, RNase PH, and YhaM. Previous work showed that PNPase, encoded by the
    Exoribonuclease
    Degradosome
    RNA Helicase A
    Citations (5)
    Polynucleotide phosphorylase (PNPase) is a processive exoribonuclease that contributes to messenger RNA turnover and quality control of ribosomal RNA precursors in many bacterial species. In Escherichia coli, a proportion of the PNPase is recruited into a multi-enzyme assembly, known as the RNA degradosome, through an interaction with the scaffolding domain of the endoribonuclease RNase E. Here, we report crystal structures of E. coli PNPase complexed with the recognition site from RNase E and with manganese in the presence or in the absence of modified RNA. The homotrimeric PNPase engages RNase E on the periphery of its ring-like architecture through a pseudo-continuous anti-parallel beta-sheet. A similar interaction pattern occurs in the structurally homologous human exosome between the Rrp45 and Rrp46 subunits. At the centre of the PNPase ring is a tapered channel with an adjustable aperture where RNA bases stack on phenylalanine side chains and trigger structural changes that propagate to the active sites. Manganese can substitute for magnesium as an essential co-factor for PNPase catalysis, and our crystal structure of the enzyme in complex with manganese suggests how the metal is positioned to stabilise the transition state. We discuss the implications of these structural observations for the catalytic mechanism of PNPase, its processive mode of action, and its assembly into the RNA degradosome.
    Degradosome
    Polynucleotide phosphorylase
    Exoribonuclease
    Exosome complex
    RNase PH
    RNA Helicase A
    Endoribonuclease
    RNase H
    Citations (110)