Uncoating ATPase Hsc70 is recruited by invariant chain and controls the size of endocytic compartments
45
Citation
36
Reference
10
Related Paper
Citation Trend
Abstract:
Targeting of class II major histocompatibility complex molecules to endocytic compartments is mediated by their association with the invariant chain (Ii). Although the identity of certain sorting signals located in Ii's cytoplasmic tail is known, proteins that interact with Ii's cytoplasmic tail in living cells remain to be identified. Synthesis of a biotinylated trimeric Ii cytoplasmic tail allowed the retrieval of two proteins that interact with this domain. We identify one of them as the 70-kDa heat-shock cognate protein (hsc70), the uncoating ATPase of clathrin-coated vesicles, and the other as its mitochondrial homologue, the glucose-regulated protein grp75. Expression of Ii in COS cells results in the formation of large endocytic compartments. We observe extensive colocalization of hsc70 with Ii in these macrosomes. Expression of a dominant-negative (K71M) green fluorescent protein-tagged version of hsc70 counteracted the ability of Ii to modify the endocytic pathway, demonstrating an interaction in vivo of Ii with hsc70 as part of the machinery responsible for macrosome formation.Keywords:
Colocalization
Immunoprecipitation
Clathrin-coated vesicles execute receptor-mediated endocytosis at the plasma membrane. However, a role for clathrin in later endocytic trafficking processes, such as receptor sorting and recycling or maintaining the organization of the endocytic pathway, has not been thoroughly characterized. The existence of clathrin-coated buds on endosomes suggests that clathrin might mediate later endocytic trafficking events. To investigate the function of clathrin-coated buds on endosomal membranes, endosome function and distribution were analyzed in a HeLa cell line that expresses the dominant-negative clathrin inhibitor Hub in an inducible manner. As expected, Hub expression reduced receptor-mediated endocytosis at the plasma membrane. Hub expression also induced a perinuclear aggregation of early endosome antigen 1-positive early endosomes, such that sorting and recycling endosomes were found tightly concentrated in the perinuclear region. Despite the dramatic redistribution of endosomes, Hub expression did not affect the overall kinetics of receptor sorting or recycling. These data show that clathrin function is necessary to maintain proper cellular distribution of early endosomes but does not play a prominent role in sorting and recycling events. Thus, clathrin's role on endosomal membranes is to influence organelle localization and is distinct from its role in trafficking pathways at the plasma membrane and trans-Golgi network.
Cite
Citations (40)
Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases.
Internalization
Retromer
Transport protein
Cite
Citations (369)
Cite
Citations (170)
The biological function of receptors is determined by their appropriate trafficking through the endosomal pathway. Following internalization, the transferrin (Tf) receptor quantitatively recycles to the plasma membrane, whereas the epidermal growth factor (EGF) receptor undergoes degradation. To determine how Tf and EGF engage these two different pathways we imaged their binding and early endocytic pathway in live cells using total internal reflection fluorescence microscopy (TIRF-M). We find that EGF and Tf bind to distinct plasma membrane regions and are incorporated into different endocytic vesicles. After internalization, both EGF-enriched and Tf-enriched vesicles interact with endosomes containing early endosome antigen 1 (EEA1). EGF is incorporated and retained in these endosomes, while Tf-containing vesicles rapidly dissociate and move to a juxtanuclear compartment. Endocytic vesicles carrying EGF recruit more Rab5 GTPase than those carrying Tf, which, by strengthening their association with EEA1-enriched endosomes, may provide a mechanism for the observed cargo-specific sorting. These results reveal pre-endocytic sorting of Tf and EGF, a specialized role for EEA1-enriched endosomes in EGF trafficking, and a potential mechanism for cargo-specified sorting of endocytic vesicles by these endosomes.
Internalization
Transferrin receptor
Cite
Citations (121)
Recent evidence has proved that in addition to the well-documented clathrin-mediated endocytic route (vesicles of 100-150 nm), at least three distinct non-clathrin-coated endocytic pathways function at the surface of mammalian cells. Endocytosis via these pathways is initiated by caveolae (50-80 nm), macropinosomes (500-2000 nm) and micropinosomes (95-100 nm). The current state of knowledge about these non-clathrin coated endocytic routes is presented and evidence that endocytic routes other than via clathrin-coated vesicles are utilised by viruses is discussed. The recent advances in these areas have provided us with tools to investigate the entry of those viruses which appear to enter cells via endocytosis into non-clathrin-coated vesicles. Data indicate that these four endocytic pathways differ in the absence, presence and/or type of coat on the vesicles, the size of the vesicles, their sensitivity to a variety of inhibitors, and in the ligands endocytosed. A historical perspective of the discovery of these non-clathrin-coated endocytic pathways is provided and recent information is summarised and discussed. The entry of viruses via non-clathrin-coated pits is destined to be an exciting new area of viral-cell entry, as has been indicated recently by the finding that entry of simian virus type 40 into cells occurs via caveolae. Copyright 1997 by John Wiley & Sons, Ltd.
Pinocytosis
Clathrin adaptor proteins
Cite
Citations (82)
Bulk endocytosis
Organelle
Pinocytosis
Cite
Citations (0)
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.
Compartment (ship)
Transferrin receptor
Retromer
Sorting nexin
Cite
Citations (39)
Cite
Citations (340)
The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.
Cite
Citations (286)
Cell-penetrating peptides (CPPs) are routinely used for the delivery of macromolecules into live human cells. To enter the cytosolic space of cells, CPPs typically permeabilize the membrane of endosomes. In turn, several approaches have been developed to increase the endosomal membrane permeation activity of CPPs so as to improve delivery efficiencies. The endocytic pathway is, however, important in maintaining cellular homeostasis, and understanding how endosomal permeation impacts cells is now critical to define the general utility of CPPs. Herein, we investigate how CPP-based delivery protocols affect the endocytic network. We detect that, in some cases, cell penetration induces the activation of Chmp1b, Galectin-3, and TFEB, which are components of endosomal repair, organelle clearance, and biogenesis pathways, respectively. We also detect that cellular delivery modulates endocytosis and endocytic proteolysis. Remarkably, a multimeric analogue of the prototypical CPP TAT permeabilizes endosomes efficiently without inducing membrane damage responses. These results challenge the notion that reagents that make endosomes leaky are generally toxic. Instead, our data indicates that it is possible to enter cells with minimal deleterious effects.
Pinocytosis
Cite
Citations (32)