logo
    Investigation of the potential pharmacokinetic and pharmaco‐dynamic drug interaction between AHN 1‐055, a potent benztropine analog used for cocaine abuse, and cocaine after dosing in rats using intracerebral microdialysis
    5
    Citation
    26
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Purpose . AHN 1‐055, a benztropine (BZT) analog, binds with high affinity to the dopamine transporter (DAT), possesses behavioral, pharmacokinetic (PK) and brain microdialysate dopamine (DA) profiles distinct from cocaine. Accordingly, the objectives of this study were to evaluate the pharmacokinetics and dopamine release of AHN 1‐055, in the presence of cocaine. Methods . Male Sprague Dawley rats (∼300 g) were administered 5 mg/kg of AHN 1‐055 and cocaine i.v. and blood and brain samples were collected over 36 h. In addition, dialysis probes were stereotaxically implanted into the nucleus accumbens and extracellular fluid (ECF) DA levels were measured. PK and PD models were used to describe the relationship between the AHN 1‐055, cocaine and DA levels. Results . No significant ( p <0.05) differences were found in the PK parameters of AHN 1‐055 alone ( V dss =18.7 l/kg, Cl =1.8 l/h/kg and t 1/2 =7.69 h) or AHN 1‐055 with cocaine ( V dss =17.4 l/kg, Cl =1.9 l/h/kg and t 1/2 =6.82 h). The brain‐to‐plasma (B/P) ratios (B/P AHN 1−055 =4.8 vs B/P with cocaine =4.4) and half‐lives ( t 1/2(AHN 1−055) =6.2 h vs t 1/2(cocaine)= 5.6 h for AHN 1‐055 alone and with cocaine were comparable. AHN 1‐055 DA profiles were significantly different after co‐administration with cocaine. There were no differences in the IC 50 for AHN 1‐055, with cocaine, however, the IC 50 for cocaine was significantly reduced with AHN 1‐055. Conclusions . The PK parameters of AHN 1‐055 were not changed, however, the effect on DA levels was affected when cocaine was administered with AHNDA profile is affected when dosed with cocaine. This latter effect is a desirable attribute in the development of a medication as a potential substitute therapeutic medication for the treatment of cocaine abuse. Copyright © 2006 John Wiley & Sons, Ltd.
    Keywords:
    Benztropine
    Microdialysis
    Cocaine dependence
    Norepinephrine transporter
    Dopamine Uptake Inhibitors
    Tropane
    A series of 6α- and 6β-substituted benztropines were synthesized. A marked enantioselectivity was observed for the 6β-methoxylated benztropines, the (1R)-isomers being more potent than the corresponding (1S) compounds. The racemic 6α-methoxy-3-(4',4' '-difluorodiphenylmethoxy)tropane (5g) was the most potent compound. It has been found that modifications at the 6-position of benztropine might reduce the DAT binding affinity, maintaining otherwise a significant dopamine uptake inhibitory activity. A reinvestigation of the absolute configuration of 6β-methoxytropinone proved the 6R configuration for the (+)-enantiomer.
    Benztropine
    Tropane
    Dopamine Uptake Inhibitors
    Citations (7)
    Benztropine (BZT) analogs inhibit dopamine uptake but are less effective than cocaine in producing behavioral effects predicting abuse liability. The present study compared reinforcing effects of intravenous BZT analogs with those of standard monoamine uptake inhibitors and the effects of their oral pretreatment on cocaine self-administration. Responding of rats was maintained by cocaine [0.032–1.0 mg/kg/injection (inj)] or food reinforcement under fixed-ratio five-response schedules. Maximal rates of responding were maintained by 0.32 mg/kg/inj cocaine or substituted methylphenidate, with lower rates maintained at lower and higher doses. The N-methyl BZT analog, AHN 1-055 (3α-[bis(4′-fluorophenyl)methoxy]-tropane), also maintained responding (0.1 mg/kg/inj), although maximal rates were less than those with cocaine. Responding was not maintained above vehicle levels by the N-allyl, AHN 2-005 (N-allyl-3α-[bis(4′-fluorophenyl)methoxy]-tropane), and N-butyl, JHW 007 [N-(n-butyl)-3α-[bis(4′-fluorophenyl)methoxy]-tropane], BZT analogs, and it was not maintained with nisoxetine or citalopram. Presession treatment with methylphenidate (3.2–32 mg/kg) dose-dependently shifted the cocaine self-administration dose-effect curve leftward, whereas nisoxetine and citalopram effects were not significant. An intermediate dose of AHN 1-055 (32 mg/kg) increased responding maintained by low cocaine doses and decreased responding maintained by higher doses. A higher dose of AHN 1-055 completely suppressed cocaine-maintained responding. Both AHN 2-005 and JHW 007 dose-dependently (10–32 mg/kg) decreased cocaine self-administration, shifting its dose-effect curve down. Decreases in cocaine-maintained responding occurred at doses of methylphenidate and BZT analogs that left food-maintained responding unchanged. During a component in which injections were not available, methylphenidate and AHN 1-055, but not AHN 2-005 or JHW 007, increased response rates. These findings further support the low abuse liability of BZT analogs and their potential development as medications for cocaine abuse.
    Tropane
    Benztropine
    Citalopram
    Self-administration
    Dopamine Uptake Inhibitors
    Abuse liability
    Cocaine abuse
    Citations (95)
    The design, synthesis and pharmacological evaluation of novel dopamine transporter ligands, based on Benztropine [3a-(diphenylmethoxy) tropane], has been a focus of our research efforts toward the development of novel cocaine-abuse pharmacotherapeutics. Structure-activity relationships at the dopamine transporter, for this series of compounds, have been derived and compared to those of cocaine and GBR 12909. These studies suggest that structurally diverse dopamine uptake inhibitors may access different binding domains on the dopamine transporter. The distinctive behavioral profile displayed in this series of compounds, as compared to cocaine and other dopamine uptake inhibitors, is of particular interest and is proposed to be relevant to the pharmacodynamic and pharmacokinetic properties of this class of tropane-based molecules.
    Tropane
    Benztropine
    Dopamine Uptake Inhibitors
    Previous studies demonstrated that analogs of benztropine (BZT) possess high affinity for the dopamine transporter, inhibit dopamine uptake, but generally have behavioral effects different from those of cocaine. One hypothesis is that muscarinic-M1 receptor actions interfere with cocaine-like effects. Several tropane-nitrogen substitutions of 4′,4′′-diF-BZT have reduced M1 affinity compared with the CH3-analog (AHN 1-055; 3α-[bis-(4-fluorophenyl)methoxy]tropane). All of the compounds displaced [3H]WIN 35,428 (2β-carbomethoxy-3β-(4-fluorophenyl)tropane) binding with affinities ranging from 11 to 108 nM. Affinities at norepinephrine ([3H]nisoxetine) and serotonin ([3H]citalopram) transporters ranged from 457 to 4810 and 376 to 3260 nM, respectively, and at muscarinic M1 receptors ([3H]pirenzepine) from 11.6 (AHN 1-055) to higher values, reaching 1030 nM for the other BZT-analogs. Cocaine and AHN 1-055 produced dose-related increases in locomotor activity in mice, with AHN 1-055 less effective than cocaine. The other compounds were ineffective in stimulating activity. In rats discriminating cocaine (29 μmol/kg i.p.) from saline, WIN 35,428 fully substituted for cocaine, whereas AHN 1-055 produced a maximal substitution of 79%. None of the other analogs fully substituted for cocaine. WIN 35,428 produced dose-related leftward shifts in the cocaine dose-effect curve, whereas selected BZT analogs produced minimal changes in the effects of cocaine. The results suggest that reducing M1 affinity of 4′,4′′-diF-BZT with N-substitutions reduces effectiveness in potentiating the effects of cocaine. Furthermore, although the BZT-analogs bind with high affinity at the dopamine transporter, their behavioral effects differ from those of cocaine. These compounds have reduced efficacy compared with cocaine, a long duration of action, and may serve as leads for the development of medications to treat cocaine abuse.
    Tropane
    Benztropine
    Dopamine Uptake Inhibitors
    Norepinephrine transporter
    Citalopram
    Citations (73)
    A series of 2'- and 3'-substituted and 3',3''-disubstituted 3α-(diphenylmethoxy)tropane analogs were designed and synthesized as novel probes for the dopamine transporter. All the analogs were evaluated for displacement of [3H]WIN 35,428 binding at the dopamine transporter and for inhibition of [3H]dopamine uptake in rat caudate putamen. Compounds were observed to monophasically displace [3H]WIN 35,428 binding to the dopamine transporter with affinities of 21.6−1836 nM (Ki). Generally, meta-substituted compounds were more potent than benztropine and equipotent to or slightly less potent than their previously reported para-substituted homologs in inhibiting [3H]WIN 35,428 binding. However, these same meta-substituted analogs were typically less potent than the 4'-substituted analogs in inhibiting [3H]dopamine uptake. Ortho-substituted analogs were generally less potent in both binding and inhibition of uptake at the dopamine transporter than either benztropine or other aryl-substituted homologs. The analogs were also tested for binding at norepinephrine and serotonin transporters as well as muscarinic m1 receptors. None of the compounds in the present study bound with high affinity to either the norepinephrine or serotonin transporters, but all bound to muscarinic m1 receptors with high affinity (Ki = 0.41−2.52 nM). Interestingly, 3'-chloro-3α-(diphenylmethoxy)tropane (5c) produced effects like cocaine in animals trained to discriminate 10 mg/kg cocaine from saline, unlike its 4'-Cl homolog and all of the previously evaluated benztropine analogs. Further evaluation of compound 5c and the other benztropine analogs will undoubtedly prove useful in the elucidation of the role of the dopamine transporter in the reinforcing effects of cocaine and the ultimate identification of a cocaine-abuse treatment.
    Benztropine
    Tropane
    Dopamine Uptake Inhibitors
    Citations (42)
    Analogs of benztropine (BZT) bind to the dopamine (DA) transporter and inhibit DA uptake but often have behavioral effects that differ from those of cocaine and other DA-uptake inhibitors. To better understand these differences, we examined the relationship between locomotor-stimulant effects of cocaine, 1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)-piperazine (GBR 12909), and BZT analogs [(3α-[bis(4′-fluorophenyl)methoxy]-tropane) (AHN 1-055) and (N-allyl-3α-[bis(4′-fluorophenyl)methoxy]-tropane) (AHN 2-005)] and their in vivo displacement of the DA transporter ligand [125I]3β-(4-iodophenyl)-tropan-2β-carboxylic acid isopropyl ester hydrochloride (RTI-121) in striatum. Cocaine, GBR 12909, and BZT analogs each displaced [125I]RTI-121 and stimulated locomotor activity in a dose- and time-dependent manner. The time course revealed a slower onset of both effects for AHN 1-055 and AHN 2-005 compared with cocaine and GBR 12909. The BZT analogs were less effective than cocaine and GBR 12909 in stimulating locomotor activity. Locomotor stimulant effects of cocaine were generally greater than predicted by the regression of displacement of [125I]RTI-121 and effect at short times after injection and less than predicted at longer times after injection. This result suggests that the apparent rate of occupancy of the DA transporter, in addition to percentage of sites occupied, contributes to the behavioral effects of cocaine. The present results suggest that among drugs that act at the DA transporter, the slower apparent rates of occupancy with the DA transporter by the BZT analogs may contribute in an important way to differences in their effectiveness.
    Tropane
    Benztropine
    Dopamine Uptake Inhibitors
    Stimulant
    Norepinephrine transporter
    Citations (48)
    3alpha-(diphenylmethoxy)tropane (benztropine) and its analogues are tropane ring-containing dopamine uptake inhibitors that display binding and behavioral profiles that are distinct from cocaine. We previously prepared a benztropine-based photoaffinity label [125I]-(N-[4-(4'-azido-3'-iodophenyl)butyl]-3alpha-[bis(4'-fluorophenyl)methoxy]tropane, [125I]1, that covalently attached to the 1-2 transmembrane spanning region of the dopamine transporter (DAT). This was in contrast to the 4-7 transmembrane spanning region labeled by a cocaine-based photoaffinity label, [125I] 2 (RTI 82). To characterize further these different binding domains, photoaffinity ligands that had the 4'-azido-3'-iodophenyl substituent extended from the same position on the tropane ring were desirable. Thus, identification of the optimal alkyl linker between this substituent and the tropane nitrogen in the benztropine series was investigated to ultimately prepare the identical N-substituted analogue of 2. In this pursuit, the N-[4-(4'-azido-3'-iodophenyl)propyl] analogue of 3alpha-[bis(4'-fluorophenyl)methoxy]tropane (9a) was synthesized as well as two isothiocyanate analogues that do not require photoactivation (10a,b) for irreversible binding. The synthesis of these target compounds was achieved using a modification of the strategy developed for 1. Evaluation of these compounds for displacing [3H]WIN 35 428 binding at DAT in rat caudate putamen revealed that the 4'-azido-3'-iodophenylbutyl substituent, found in 1, provided optimal binding affinity and was chosen to replace the N-CH3 group on 2. Both the 4'-azido-3'-iodophenyl- and the 4'-isothiocyanatophenylbutyl analogues of 2 (25 and 26, respectively) were synthesized. Both products bound to DAT with comparable potency (IC(50) = 30 nM) to RTI 82 (2). In addition, compound 26 demonstrated wash-resistant displacement of [3H]WIN 35 428 in HEK 293 cells stably transfected with hDAT. These ligands will provide important tools for further characterizing the binding domains for tropane-based dopamine uptake inhibitors at the DAT.
    Tropane
    Benztropine
    Dopamine Uptake Inhibitors
    Citations (33)
    The benztropine analog N-(n-butyl)-3α-[bis(4′-fluorophenyl)methoxy]-tropane (JHW 007) displays high affinity for the dopamine transporter (DAT), but unlike typical DAT ligands, has relatively low abuse liability and blocks the effects of cocaine, including its self-administration. To determine sites responsible for the cocaine antagonist effects of JHW 007, its in vitro binding was compared with that of methyl (1R,2S,3S,5S)-3-(4-fluorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (WIN 35428) in rats, mice, and human DAT (hDAT)-transfected cells. A one-site model, with Kd values of 4.21 (rat) and 8.99 nM (mouse) best fit the [3H]WIN 35428 data. [3H]JHW 007 binding best fit a two-site model (rat, 7.40/4400 nM; mouse, 8.18/2750 nM), although a one-site fit was observed with hDAT membranes (43.7 nM). Drugs selective for the norepinephrine and serotonin transporters had relatively low affinity in competition with [3H]JHW 007 binding, as did drugs selective for other sites identified previously as potential JHW 007 binding sites. The association of [3H]WIN 35428 best fit a one-phase model, whereas the association of [3H]JHW 007 best fit a two-phase model in all tissues. Because cocaine antagonist effects of JHW 007 have been observed previously soon after injection, its rapid association observed here may contribute to those effects. Multiple [3H]JHW 007 binding sites were obtained in tissue from mice lacking the DAT, suggesting these as yet unidentified sites as potential contributors to the cocaine antagonist effects of JHW 007. Unlike WIN 35428, the binding of JHW 007 was Na+-independent. This feature of JHW 007 has been linked to the conformational status of the DAT, which in turn may contribute to the antagonism of cocaine.
    Benztropine
    Cocaine abuse
    Dopamine Uptake Inhibitors
    Abuse liability
    Citations (33)
    Benztropine and its analogs are tropane ring-containing dopamine uptake inhibitors that produce behavioral effects markedly different from cocaine and other dopamine transporter blockers. We investigated the benztropine binding site on dopamine transporters by covalently attaching a benztropine-based photoaffinity ligand, [125I]N-[n-butyl-4-(4"'-azido-3"'-iodophenyl)]-4', 4"-difluoro-3alpha-(diphenylmethoxy)tropane ([125I]GA II 34), to the protein, followed by proteolytic and immunological peptide mapping. The maps were compared with those obtained for dopamine transporters photoaffinity labeled with a GBR 12935 analog, [125I]1-[2-(diphenylmethoxy)ethyl]-4-[2-(4-azido-3-iodophenyl)ethy l]p iperazine ([125I]DEEP), and a cocaine analog, [125I]3beta-(p-chlorophenyl)tropane-2beta-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([125I]RTI 82), which have been shown previously to interact with different regions of the primary sequence of the protein. [125I]GA II 34 became incorporated in a membrane-bound, 14 kDa fragment predicted to contain transmembrane domains 1 and 2. This is the same region of the protein that binds [125I]DEEP, whereas the binding site for [125I]RTI 82 occurs closer to the C terminal in a domain containing transmembrane helices 4-7. Thus, although benztropine and cocaine both contain tropane rings, their binding sites are distinct, suggesting that dopamine transport inhibition may occur by different mechanisms. These results support previously derived structure-activity relationships suggesting that benztropine and cocaine analogs bind to different domains on the dopamine transporter. These differing molecular interactions may lead to the distinctive behavioral profiles of these compounds in animal models of drug abuse and indicate promise for the development of benztropine-based molecules for cocaine substitution therapies.
    Tropane
    Photoaffinity labeling
    Drugs that inhibit dopamine (DA) reuptake through actions at the dopamine transporter (DAT) have been proposed as candidates for development as pharmacotherapies for cocaine abuse. Accordingly, it is important to understand the potential pharmacological interactions of cocaine with other drugs acting at the DAT. Effects of combinations of cocaine with a cocaine analog, 2β-carbomethoxy-3β-(4-fluorophenyl)tropane (WIN 35,428), were compared quantitatively with the combinations of cocaine with the N-butyl,4′,4″-diF benztropine analog, 3-(bis(4-fluorophenyl)methoxy)-8-butyl-8-azabicyclo[3.2.1]octane (JHW 007), to determine whether their effects on DA levels in the shell of the nucleus accumbens (NAC) in mice differed. Each of the drugs alone produced dose-related elevations in NAC DA levels. In contrast to the other drugs, JHW 007 was less effective, producing maximal effects that approached 400% of control versus ∼700% with the other drugs. In addition, the JHW 007 dose-effect curve was not as steep as those for cocaine and WIN 35,428. Combinations of cocaine with its analog, WIN 35,428, were most often greater than those predicted based on dose additivity. In contrast, combinations of cocaine with JHW 007 were most often subadditive. This outcome is consistent with recent studies suggesting that structurally divergent DA uptake inhibitors bind to different domains of the DAT, which can result in different DAT conformations. The conformational changes occurring with JHW 007 binding may result in functional outcomes that alter its abuse liability and its effects in combination with cocaine.
    Tropane
    Benztropine
    Dopamine Uptake Inhibitors
    Cocaine abuse
    Reuptake
    Cocaine dependence
    Citations (49)