logo
    Mechanisms of Protein Crystal Growth: An Atomic Force Microscopy Study of Canavalin Crystallization
    117
    Citation
    21
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    In situ atomic force microscopy has been used to investigate step dynamics and surface evolution during the growth of single crystals of canavalin, a protein with a well known structure. Growth occurs by step flow on complex dislocation hillocks, and involves the formation and incorporation of small, mobile molecular clusters. Defects in the form of hollow channels are observed and persist over growth times of several days. The results are used to establish a physical picture of the growth mechanism, and estimate the values of the free energy of the step edge, $\ensuremath{\alpha}$, and the kinetic coefficient, $\ensuremath{\beta}$.
    Keywords:
    Hillock
    Protein crystallization
    A technique is described whereby the addition of low concentrations (millimolar to micromolar) of the fluorescent dye 1,8-ANS to the protein solution prior to crystallization results in crystallization experiments in which protein crystals are strongly contrasted above background artifacts when exposed to low-intensity UV radiation. As 1,8-ANS does not covalently modify the protein sample, no further handling or purification steps are necessary. The system has been tested on a wide variety of protein samples and it has been shown that the addition of 1,8-ANS has no discernible effect on the crystallization frequencies or crystallization conditions of these proteins. As 1,8-ANS interacts with a wide variety of proteins, this is proposed to be a general solution for the automated classification of protein crystallization images and the detection of protein crystals. The results also demonstrate the expected discrimination between salt and protein crystals, as well as allowing the straightforward identification of small crystals that grow in precipitate or under a protein skin.
    Protein crystallization
    Citations (43)
    Neutron diffraction experiments are informative for determining the locations of hydrogen atoms in protein molecules; however, much larger crystals are needed than those required for X-ray diffraction. Thus, additional techniques are required to grow larger crystals. Here, a unique crystallization device and strategy for growing large protein crystals are introduced. The device uses two micropumps to control crystal growth by altering the precipitant concentration and regulating the pinpoint injection of dry air flow to the crystallization cell. Furthermore, the crystal growth can be observed in real time. Preliminary microbatch crystallization experiments at various concentration ranges of polyethylene glycol (PEG) 4000 and sodium chloride were first performed to elucidate optimized crystallization conditions. Based on these results, a device to precisely control the sodium chloride and PEG concentrations and the supply of dry air to the crystallization cell was used, and 1.8 mm lysozyme and 1.5 mm alpha-amylase crystals with good reproducibility were obtained. X-ray data sets of both crystals were collected at room temperature at BL2S1 of the Aichi Synchrotron Radiation Center and confirmed that these crystals were of high quality. Therefore, this crystallization device and strategy were effective for growing large, high-quality protein crystals.
    Protein crystallization
    Crystal (programming language)
    Water of crystallization
    Citations (1)
    High-throughput screening of a wide range of different conditions is typically required to obtain X-ray quality crystals of proteins for structure–function studies. The outcomes of individual experiments, i.e. the formation of gels, precipitates, microcrystals, or crystals, guide the search for and optimization of conditions resulting in X-ray diffraction quality crystals. Unfortunately, the protein will remain soluble in a large fraction of the experiments. In this paper, an evaporation-based crystallization platform is reported in which droplets containing protein and precipitant are gradually concentrated through evaporation of solvent until the solvent is completely evaporated. A phase transition is thus ensured for each individual crystallization compartment; hence the number of experiments and the amount of precious protein needed to identify suitable crystallization conditions is reduced. The evaporation-based method also allows for rapid screening of different rates of supersaturation, a parameter known to be important for optimization of crystal growth and quality. The successful implementation of this evaporation-based crystallization platform for identification and especially optimization of crystallization conditions is demonstrated using the model proteins of lysozyme and thaumatin.
    Protein crystallization
    Supersaturation
    Thaumatin
    Crystal (programming language)
    Citations (53)
    Protein crystallization
    Crystal (programming language)
    Citations (0)
    While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. To further examine the issue of purity in macromolecule crystallization, this study investigates the effect of the protein impurities, avidin, ovalbumin, and conalbumin at concentrations up to 50%, on the solubility, crystal face growth rates, and crystal purity of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the {110} and {101} lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained ( > 99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:776–785, 1998.
    Protein crystallization
    Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography program at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens.
    Protein crystallization
    Crystal (programming language)
    Citations (22)
    Protein crystallization conditions that resulted in crystal structures published by scientists at the MRC Laboratory of Molecular Biology (MRC-LMB, Cambridge, UK) have been analysed. It was observed that the more often a crystallization reagent had been used to formulate the initial conditions, the more often it was found in the reported conditions that yielded diffraction quality crystals. The present analysis shows that, despite the broad variety of reagents, they have the same impact overall on the yield of crystal structures. More interestingly, the correlation implies that, although the initial crystallization screen may be considered very large, it is an under-sampled combinatorial approach.
    Protein crystallization
    Crystal (programming language)
    Citations (15)
    Protein crystallization is of great importance because protein crystals have a number of different important applications, including large-scale purification of proteins, determination of protein structure, nanoparticle preparation, and theoretical studies of crystallization. An approach often used to efficiently crystallize proteins is the use of nucleants or seeds (small fragments of protein crystals) that can help increase the probability of protein crystallization. Due to the very positive effect that seeding has on protein crystallization, seeds are now widely accepted and utilized in practical protein crystallization. Here, we show that cross-linked protein crystals (CLPCs), which retain the crystal structure but are much more stable than non-cross-linked crystals, can also be used as a new type of seed for promoting protein crystallization. Seeding with CLPCs has effects on both the reproducibility and screening of protein crystals and could improve the optical perfection (well-defined facets) of protein crystals and the probability of obtaining protein crystals. In addition, the cross-linked protein crystals may reduce the concentration of protein molecules needed to obtain protein crystals. Furthermore, CLPCs are very stable in air, and no protective medium is necessary for the long-term storage of CLPCs. This feature makes the CLPC seeding method a potentially powerful technique in practical protein crystallization on either a laboratorial or an industrial scale.
    Protein crystallization
    Crystal (programming language)
    Citations (15)