logo
    PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells is mediated by p27kip1
    146
    Citation
    30
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    Cowden syndrome
    Tensin
    The PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumour suppressor is mutated in 40–50% of human endometrial cancers. PTEN exerts its effects in part via inhibition of the antiapoptotic protein AKT. We demonstrate that two endometrial cancer cell lines that harbour PTEN mutations, Ishikawa and RL95-2, have high levels of phosphorylated AKT and high AKT kinase activity. Two additional endometrial cancer cell lines that express wild-type PTEN, Hec1A and KLE, have little phosphorylated AKT and minimal demonstrable AKT kinase activity. We tested a potential inhibitor of the AKT pathway, API-59CJ-OMe, in these four cell lines. We found that API-59CJ-OMe inhibits AKT kinase activity and induces apoptosis in the Ishikawa and RL95-2 cell lines with high AKT activity, but has little effect on Hec1A and KLE cells without AKT activity. API-59CJ-OMe may therefore have therapeutic potential for those endometrial cancers that harbour PTEN mutations and AKT activation.
    Tensin
    Citations (74)
    PTEN(phosphatase and tensin homolog deleted on chromosome ten)is phosphatase specificity and can inhibit oncogenesis.The mutation and loss of PTEN is the oncogenesis basis of all kinds of tumor,including urinary system tumor.Studies show that mutation and loss of PTEN,which can lead to the dysfunction of tumor suppress,induced oncogenesis of renal cell carcinoma,bladder carcinoma and prostatic carcinoma,revealling that PTEN can inhibit tumorigenesis of urnary system.But the detail of the mutation and loss of PTEN and how PTEN inhibit tumorigensis are still unclear,further study is warranted.
    Tensin
    Citations (0)
    Thyroid cancer is a heterogeneous disorder characterized by gene mutations that activate signaling pathways, and also by abnormalities in tumor suppressor genes and cell cycle proteins. Activation of the Akt/PKB signaling pathway appears to be an important event in thyroid tumorigenesis and, perhaps, in tumor progression too. Akt is activated in Cowden's syndrome through inactivation of PTEN, a negative regulator of Akt. Cowden's syndrome is an autosomal dominant multiorgan hamartoma syndrome characterized by benign and malignant thyroid tumors, breast cancers, and colon cancers. In addition, the Akt pathway appears to be activated in a significant proportion of sporadic thyroid cancers through activation of growth factor pathways by thyroid oncogenes and/or receptor overexpression. Disruption of PI3-kinase activity pharmacologically or disruption of Akt signaling using dominant negative cDNA expression have demonstrated salutary effects on several cancer models in vitro. Therefore, Akt represents an attractive target for pharmaceutical development for a variety of malignancies, including thyroid cancer.
    Cowden syndrome
    Citations (35)
    Mutations activating the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway and inactivating the TP53 tumour-suppressor gene are common mechanisms that cancer cells require to proliferate and escape pre-programmed cell death. In a well-described mechanism, Akt mediates negative control of p53 levels through enhancing MDM2 (murine double minute 2)-mediated targeting of p53 for degradation. Accumulating evidence is beginning to suggest that, in certain circumstances, PTEN (phosphatase and tensin homologue deleted on chromosome 10)/PI3K/Akt also promotes p53 translation and protein stability, suggesting that additional mechanisms may be involved in the Akt-mediated regulation of p53 in tumours. In the present article, we discuss these aspects in the light of clinical PI3K/Akt inhibitors, where information regarding the effect on p53 activity will be a crucial factor that will undoubtedly influence therapeutic efficacy.
    Tensin
    Phosphoinositide 3-kinase
    Citations (190)
    Background: The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors. Objective: This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells. Methods: We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular. Results/conclusions: The PI3K/PTEN/Akt/mTOR pathway is frequently aberrantly regulated in various cancers and targeting this pathway with small molecule inhibitors and may result in novel, more effective anticancer therapies.
    Tensin
    RPTOR
    Citations (140)
    Recent studies have shown that miR-494-3p is oncogene and has a central role in many solid tumors; however, the role of miR-494-3p in the progression and prognosis of hepatocellular carcinoma (HCC) remains unknown. In this study, it was found that miR-494-3p was up-regulated in HCC tissues. The high level of miR-494-3p in HCC tumors was correlated with aggressive clinicopathological characteristics and predicted poor prognosis in HCC patients. Functional study demonstrated that miR-494-3p significantly promoted HCC cell metastasis in vitro and vivo. Since phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) signaling is a basic oncogenic driver in HCC, a potential role of miR-494-3p was explored as well as its target genes in PI3K/AKT activation. Of all the predicted target genes of miR-494-3p, the tumor-suppressor phosphatase and tensin homolog (PTEN) were identified. In conclusion, the data we collected could define an original mechanism of PI3K/AKT hyperactivation and sketch the regulatory role of miR-494-3p in suppressing the expression of PTEN. Therefore, targeting miR-494-3p could provide an effective therapeutic method for the treatment of the disease.
    Tensin
    Phosphoinositide 3-kinase
    Hyperactivation
    Citations (68)
    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was identified in 1997 as a tumor suppressor gene through mapping of homozygous mutations occurring in multiple sporadic tumor types and in patients with cancer predisposition syndromes including Cowden disease (Song et al., 2012). Since that time, PTEN has emerged as one of the most frequently mutated or deleted genes in human cancers, including human skin cancers. In particular, loss of PTEN function through mutation or deletion has been observed in up to 70% of melanoma cell lines, and epigenetic silencing of PTEN has been observed in 30-40% of malignant melanomas (Mehnert and Kluger, 2012).
    Tensin
    Cowden syndrome
    Citations (6)