Carbon monoxide modulates the response of human basophils to FcεRI stimulation through the heme oxygenase pathway
Alfredo VannacciRoberto BarontiGiovanni ZagliCosimo MarzoccaSimone PierpaoliDanièle BaniMaria Beatrice PassaniPier Francesco MannaioniEmanuela Masini
11
Citation
51
Reference
10
Related Paper
Citation Trend
Keywords:
Hemin
ABSTRACT Candida albicans is a major fungal pathogen that can utilize hemin and hemoglobin as iron sources in the iron-scarce host environment. While C. albicans is a heme prototroph, we show here that it can also efficiently utilize external heme as a cellular heme source. Using genetically encoded ratiometric fluorescent heme sensors, we show that heme extracted from hemoglobin and free hemin enter the cells with different kinetics. Heme supplied as hemoglobin is taken up via the CFEM (Common in Fungal Extracellular Membrane) hemophore cascade, and reaches the cytoplasm over several hours, whereas entry of free hemin via CFEM-dependent and independent pathways is much faster, less than an hour. To prevent an influx of extracellular heme from reaching toxic levels in the cytoplasm, the cells deploy Hmx1, a heme oxygenase. Hmx1 was previously suggested to be involved in utilization of hemoglobin and hemin as iron sources, but we find that it is primarily required to prevent heme toxicity. Taken together, the combination of novel heme sensors with genetic analysis revealed new details of the fungal mechanisms of heme import and homeostasis, necessary to balance the uses of heme as essential cofactor and potential iron source against its toxicity.
Hemin
Hemeprotein
Cite
Citations (1)
Carbon monoxide (CO) has been identified as an endogenous biological messenger in the brain. Heme oxygenase (HO) catalyzes the metabolism of heme to CO and biliverdin. Previously, we have shown the involvement of CO in central cardiovascular regulation, baroreflex modulation, and glutaminergic neuro-transmission in the nucleus tractus solitarii (NTS) of rats. In this study, we examined which HO isoform could be induced after hemin injection in the NTS. We also investigated their in situ distributions in the NTS after induction. Male Sprague-Dawley rats were anesthetized with urethane, and blood pressure was monitored intra-arterially. Unilateral microinjection of hemin (1 nmol), a heme molecule cleaved by HO to yield CO, produced significant decrease in blood pressure and heart rate. These cardiovascular effects of hemin were attenuated by prior administration of HO inhibitor zinc protoporphyrin IX (ZnPPIX). Microinjection of hemin into NTS resulted in significant induction of HO-1 protein expression in situ. Pretreatment of ZnPPIX significantly inhibited the HO-1 induction after hemin injection. No significant changes of HO-2 expression were found after hemin injection and ZnPPIX pretreatment. The in situ inductions of the HO-1 protein expression were further confirmed to be in glial cells and neurons after hemin injections into the NTS. These results indicated HO-1 but not HO-2 might be responsible for the generation of CO and contribute to central control of cardiovascular effects.
Hemin
Biliverdin
Zinc protoporphyrin
Cite
Citations (18)
Candida albicans is a major fungal pathogen that can utilise hemin and haemoglobin as iron sources in the iron-scarce host environment. While C. albicans is a heme prototroph, we show here that it can also efficiently utilise external heme as a cellular heme source. Using genetically encoded ratiometric fluorescent heme sensors, we show that heme extracted from haemoglobin and free hemin enter the cells with different kinetics. Heme supplied as haemoglobin is taken up via the Common in Fungal Extracellular Membrane (CFEM) hemophore cascade, and reaches the cytoplasm over several hours, whereas entry of free hemin via CFEM-dependent and independent pathways is much faster, less than an hour. To prevent an influx of extracellular heme from reaching toxic levels in the cytoplasm, the cells deploy Hmx1, a heme oxygenase. Hmx1 was previously suggested to be involved in utilisation of haemoglobin and hemin as iron sources, but we find that it is primarily required to prevent heme toxicity. Taken together, the combination of novel heme sensors with genetic analysis revealed new details of the fungal mechanisms of heme import and homeostasis, necessary to balance the uses of heme as essential cofactor and potential iron source against its toxicity.
Hemin
HMOX1
Hemeprotein
Cite
Citations (17)
Hemin
Cite
Citations (43)
The in vivo effect of hemin on both hepatic oxidative stress and heme oxygenase induction was studied. A marked increase in lipid peroxidation was observed 1 hr after hemin administration. Heme oxygenase-1 activity and expression appeared 6 hr after treatment, reaching a maximum between 12 and 15 hr after hemin administration. Such induction was preceded by a decrease in the soluble and enzymatic defenses, both effects taking place some hours before induction of heme oxygenase. Ferritin content began to increase 6 hr after heme oxygenase induction, and these increases were significantly higher 15 hr after treatment and remained high for at least 24 hr after hemin injection. Co-administration of tin protoporphyrin IX, a potent inhibitor of heme oxygenase, completely prevented the enzyme induction and the increase in ferritin levels, increasing the appearance of oxidative stress parameters. Administration of bilirubin, prevented the heme oxygenase induction as well as the decrease in hepatic GSH and the increase of lipid peroxidation when it was administered 2 hr before hemin treatment. These results indicate that the induction of heme oxygenase by hemin may be a general response to oxidant stress, by increasing bilirubin and ferritin levels and could therefore provide a major cellular defense mechanism against oxidative damage.
Hemin
Biliverdin
Cite
Citations (17)
Hemin
Cite
Citations (4)
Heme oxygenase-1 (HO-1) is a cytoprotective enzyme, the expression of which is highly sensitive to induction by pro-oxidant stimuli including the substrate heme and reactive oxygen species. Conceptually, the perception that HO-1 plays a key role in response to oxidative damage is paralleled by evidence showing high expression of HO-1 in a variety of cell systems challenged with nitric oxide (NO) or NO-derivatives, thus revealing a potential biological function for HO-1 against nitrosative stress. In this study, we report that exposure of cardiac cells to hemin (5-20 microM) in combination with compounds that liberate nitroxyl (HNO/NO-) or release NO significantly potentiates HO-1 mRNA and protein expression leading to a remarkable increase in heme oxygenase activity under both normoxic and hypoxic conditions. The amplification of the heme oxygenase pathway appears to involve a direct interaction between heme and the NO groups, as the ability of both NO(-)- and NO-releasing agents to induce HO-1 is totally lost by their pre-incubation for 1 hr in complete medium prior to cell treatment but is highly preserved by addition of hemin during the preincubation step. In addition, we show that the redox-sensitive transcription factor Nrf2 is highly expressed in the nuclear fraction of cells exposed to the NO- generator and that this effect is totally abolished by the presence of N-acetyl-L-cysteine. Interestingly, the expression of Nrf2 is gradually intensified by treating cells with a combination of the NO- releaser and increasing concentrations of hemin. Thus, a strict parallelism exists between the extent of HO-1 induction and expression of Nrf2 elicited by the heme-NO interaction. We propose that modification of the iron protoporphyrin centers by NO groups to modulate HO-1 expression might be regarded as a molecular switch to maximize heme oxygenase enzymatic activity and consequently mitigate the redox imbalance imposed by oxidative and nitrosative stress.
Hemin
Nitroxyl
Inducer
Hemeprotein
Cite
Citations (57)
The problem of the feedback inhibitory effect of heme on its own synthesis in erythroid cells was studied using different methods. The activity of δ‐aminolevulinic acid synthetase was determined in the insoluble particles containing mitochondria and stroma prepared from rabbit reticulocytes and in the lysate from these reticulocytes. The effect of hemin on the incorporation of [2‐ 14 C]glycine into heme was measured in the lysate from rabbit reticulocytes. The effect of hemin on the incorporation of 59 Fe into heme was studied in reticulocytes with artificially elevated labeled non‐heme iron pool. All the three different methods used produced evidence that hemin does not directly inhibit its own synthesis. No feedback control by hemin of heme synthesis in the rabbit reticulocytes at the level of δ‐aminolevulinic acid synthetase could be proved. The principal site of inhibition by hemin in intact reticulocytes appears to be the transfer of iron into the cells.
Hemin
Reticulocyte
Cite
Citations (19)
Objective: To explore the inhibition mechanism of heme oxygenase-1(HO-1) on the progress of atherosclerosis in rats.Methods: Thirty male SD rats were randomly divided into three groups as control group,model group and hemin group.After three months,the serum concentrations of C-reaction protein(CRP) and interleulin-6(IL-6) of each group were measured.The expression of HO-1 and CD68 was measured by immunenhistochemistry.Results: Compared with that respectively in the control group,the CRP,IL-6,HO-1 and CD-68 in the model group and the hemin group increased significantly(P0.05).Compared with that in the model group,HO-1 of the hemin group increased significantly(P0.01),while the RAAPI,MDA,CD68 and MMP-9 decreased(P0.05).Conclusion: Heme oxygenase-1 can prevent atherosclerotic progression through inhibiting the inflammatory factors and decreasing the macrophages number,accordingly inhibiting the inflammatory response.
Hemin
CD68
Group A
Rat model
Cite
Citations (0)
Heme oxygenase-1 (HO-1) catalyzes the enzymatic degradation of heme to carbon monoxide, bilirubin, and iron. All three products possess biological functions; bilirubin, in particular, is a potent free radical scavenger of which its antioxidant property is enhanced at low oxygen tension. Here, we investigated the effect of severe hypoxia and reoxygenation on HO-1 expression in cardiomyocytes and determined whether HO-1 and its product, bilirubin, have a protective role against reoxygenation damage. Hypoxia caused a time-dependent increase in both HO-1 expression and heme oxygenase activity, which gradually declined during reoxygenation. Reoxygenation of hypoxic cardiomyocytes produced marked injury; however, incubation with hemin or bilirubin during hypoxia considerably reduced the damage at reoxygenation. The protective effect of hemin is attributable to increased availability of substrate for heme oxygenase activity, because hypoxic cardiomyocytes generated very little bilirubin when incubated with medium alone but produced substantial bile pigment in the presence of hemin. Interestingly, incubation with hemin also maintained high heme oxygenase activity levels during the reoxygenation period. Reactive oxygen species generation was enhanced after hypoxia, and hemin and bilirubin were capable once again to attenuate this effect. These results indicate that the HO-1-bilirubin pathway can effectively defend hypoxic cardiomyocytes against reoxygenation injury and highlight the issue of heme availability in the cytoprotective action afforded by HO-1.
Hemin
Biliverdin
Hypoxia
Cite
Citations (100)