Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices
127
Citation
47
Reference
10
Related Paper
Citation Trend
Abstract:
A novel method for fabricating all-solid flexible microsupercapacitors (MSCs) was proposed and developed by utilizing screen printing technology. A typical printed MSC is composed of a printed Ag electrode, MnO2/onion-like carbon (MnO2/OLC) as active material and a polyvinyl alcohol:H3PO4 (PVA:H3PO4) as solid electrolyte. A capacity of 7.04 mF cm(-2) was achieved for the screen printed MnO2/OLC MSCs at a current density of 20 μA cm(-2). It also showed an excellent cycling stability, with 80% retention of the specific capacity after 1000 cycles. The printed all-solid flexible MSCs exhibited remarkably high mechanical flexibility when the devices were bent to a radius of 3.5 mm. In addition, all-solid MSCs were successfully demonstrated by screen printing technique on various substrates, such as silicon, glass and conventional printing paper. Moreover, the screen printing technique can be extended to other active materials, such as OLC and carbon nanotubes. This method provides a general route for printable all-solid flexible MSCs, which is compatible with the roll-to-roll process for various high performance active materials.Keywords:
Screen printing
Polyvinyl Alcohol
Printed Electronics
Printed Electronics
Screen printing
3d printed
Digital printing
Cite
Citations (1)
The purpose of this paper is to present a newly developed process for the fabrication of multilayer circuits based on the pad-printing technique. Even though the maturity level, in terms of accuracy, substrate type and print size of several printing industrial processes is relatively high, the fabrication complexity of multilayer printed electronics remains relatively high. Due to its versatility, the pad-printing technique allows the superposition of printed conductive and insulating layers. Compared to other printing processes, its main advantage is the ability to print on various substrates even on flexible, curved or irregular surfaces. Silver-based inks were used for the formulation of conductive layers while UV inks were employed to fulfil the functionality of the insulating layers. To demonstrate the functionality of the pad-printing results, a multilayer test pattern has been designed and printed on Kapton®. Furthermore, to demonstrate the efficacy of this approach, a multilayer circuit composed of three stacked layers has been designed and printed on various substrates including Kapton®, paper and wood. This electronic circuit controls an array of LEDs through the manipulation of a two-key capacitive touch sensor. This study, allowed us to define recommendations for the different parameters leading to high printing quality. We expect a long-term beneficial impact of this study towards a low-cost, fast, and environmental-friendly production of printed electronics.
Kapton
Printed Electronics
Screen printing
Flexible Electronics
Conductive ink
Cite
Citations (5)
Printed Electronics
Screen printing
Digital printing
3d printed
Cite
Citations (0)
This case study evaluates a highly flexible screen printed through-hole-via using silver microparticle inks for applications in energy harvesting and storage modules. The printed vias fabrication and reliability are evaluated by means of a double sided screen-printing method and repetitive (cyclic) bending tests. Vias, in 125 μm thick PET, were laser cut (50, 100, 150, and 200 μm nominal diameter) then filled, and simultaneously connected to adjacent vias, by screen printing. To investigate the use of the printed via in a monolithic energy module, the vias were used for the fabrication of a flexible printed supercapacitor (aqueous electrolyte and carbon electrode). The results indicate that the lower viscosity silver ink (DuPont 5064H) does not fill the via as effectively as the higher viscosity ink (Asahi LS411AW), and only the sidewall of the vias are coated as the via size increases (≥ 150 μm diameter). Conversely, the Asahi silver paste fills the via more thoroughly and exhibited a 100 % yield (1010 vias; 100 μm nominal via diameter) with the 2-step direct screen-printing method. The bending test showed no signs of via specific breakdown after 30 000 cycles. The results indicate that this via filling process is likely compatible with roll-to-roll screen printing to enable multi-layered printed electronics devices.
Screen printing
Printed Electronics
Flexible Electronics
Cite
Citations (10)
With the development of technologies in printed electronics, they are perfect for low performance applications, such as displays, labels, clothing, and batteries. Flexible, electrical circuits can be printed using functional inks and printing methods, such as screen printing, gravure and inkjet. Uniform ink surface, smoothness, fine lines, and registration are keys in determining the capability of printed electronics. Screen mesh count, printing methods and emulsion thickness are all variables that are involved in screen printing and need to be quantified in order to determine optimal operational conditions. Inkjet printing is used to conductive traces based on its tiny drop. This study attempted to control human errors during operation that might influence electrical conductivity with inkjet and screen printing.
Printed Electronics
Screen printing
Conductive ink
Digital printing
Flexible Electronics
Inkjet Printing
Cite
Citations (0)
Printed Electronics
Screen printing
Impression
Cite
Citations (0)
Abstract Screen printing has been adopted for fabricating a wide variety of electronic devices. However, the printing defects and reliability have been an obstacle for industrialization of printed electronics. In this research, the artificial intelligence (AI) model was developed and integrated with the in-house roll-to-roll screen printing system to detect smearing defect, which is one of the main defects of screen printing. The U-Net architecture was adopted, and a total of 19 models were designed with model sizes ranging from 8E + 3 to 3E + 7 number of parameters. Their performances as validation mean Intersection over Union (IoU) were analyzed, and the optimal model was chosen with a validation mean IoU of 95.1% and a number of parameters of 8E + 6. The printed line images were evaluated by the AI model for various printing conditions, such as printed line widths, printing paste premixing, printing speeds, and printed line directions, which showed that the model could effectively detect the smearing defects. Also, the AI model capabilities were investigated for repeated printing, which demonstrated that it can be used for the reliability assessment of the screen printing process.
Printed Electronics
Screen printing
Digital printing
Line (geometry)
Cite
Citations (12)
Gravure printing is one of the most promising high-speed, roll-to-roll techniques for printed electronics. The printing of electronic components is undergoing rapid changes from screen to gravure methods due to advances in imaging technology. In this study, by investigating specific printing parameters, the authors demonstrated that high-viscosity silver ink with a trench pattern is suitable for printing high-conductivity lines. To address the difficulties of transferring high-viscosity conductive ink, they developed a wiping gravure system in which the wiping device is used prior to the doctoring process. In addition, they evaluated the feasibility of applying the wiping device to gravure printing using a gravure printing testing machine, and certain characteristics of the printing process were analyzed through computer simulations. They sought to optimize the high-viscosity printing process by using the trench pattern, instead of common gravure cells. As a result, they were able to demonstrate printed lines with high resolution (50 μm width, 3.3 μm thickness) and low resistivity (7 ×10−5 Ω cm).
Printed Electronics
Digital printing
Screen printing
3d printed
Roll-to-roll processing
Cite
Citations (1)
Recently, more and more studies are carried out in the field of printed RFID tags. It is connected with rapid development of new electronic technology, i.e. printed electronics which utilizes printing techniques, like screen printing, inkjet, flexography or gravure, for production of electronic components. This method is on one hand environmentally friendly because it allows eliminating wastes emerging during etching process used commonly in electronics. On the other hand, components can be printed on low cost flexible substrates, like foil or paper. These two factors cause that such products are cheap and can be competitive with their equivalents used currently. In this study, investigations of RFID tag antennas working in UHF frequency range made with screen printing technique are described. Conductive polymer pastes containing silver nanopowder, silver flakes or carbon nanotubes were used for antenna fabrication. Each of them was deposited on foil and paper. Properties of printed antennas were investigated by return loss measurements performed in the frequency range 0.5 ÷ 1.5 GHz. Achieved results were compared with simulation carried out in CST Microwave Studio. Antenna surface profile was checked using optical profilometer or metallographic microscope. Its mechanical tests were also conducted. The obtained results showed that the best candidate for antenna printing on flexible substrate was the paste with silver nanopowder because it combined high conductivity and high mechanical durability.
Printed Electronics
Screen printing
Conductive ink
Cite
Citations (0)
Printed Electronics
Screen printing
Digital printing
3d printed
Cite
Citations (0)