Efficient Computation of 1-D Periodic Layered Mixed Potentials for the Analysis of Leaky-Wave Antennas With Vertical Elements
Guido ValerioS. PaulottoPaolo BaccarelliDavid R. JacksonDonald R. WiltonWilliam A. JohnsonAlessandro Galli
15
Citation
61
Reference
10
Related Paper
Citation Trend
Abstract:
An efficient mixed-potential integral equation formulation is proposed for the analysis of one-dimensional (1-D) periodic leaky-wave antennas (LWAs) based on planar stratified configurations with inclusions of arbitrarily oriented metallic or dielectric perturbations. Both the transverse and vertical components of the mixed-potential Green's functions due to a 1-D phased array of dipoles in a layered medium are accelerated using suitable homogeneous-medium asymptotic extractions from the standard spectral series of Floquet harmonics. A novel acceleration procedure is applied for the computation of the vertical potentials whose extracted terms can be expressed as potentials from a 1-D phased array of half-line sources in a homogeneous medium. Their numerical calculation requires a suitable modification of the Ewald method, thus resulting in new modified spectral and spatial series, having Gaussian convergence even in the case of complex modes and improper harmonics. Numerical comparisons for the 1-D periodic potentials, both in the case of bounded and unbounded (e.g., leaky) harmonics, validate the efficiency and accuracy of the proposed acceleration technique. The method is illustrated and verified by determining the dispersion behavior of both bound and leaky modes for several LWA test cases.Keywords:
Floquet theory
We study heating dynamics in isolated quantum many-body systems driven periodically at high frequency and large amplitude. Combining the high-frequency expansion for the Floquet Hamiltonian with Fermi's golden rule (FGR), we develop a master equation termed the Floquet FGR. Unlike the conventional one, the Floquet FGR correctly describes heating dynamics, including the prethermalization regime, even for strong drives, under which the Floquet Hamiltonian is significantly dressed, and nontrivial Floquet engineering is present. The Floquet FGR depends on system size only weakly, enabling us to analyze the thermodynamic limit with small-system calculations. Our results also indicate that, during heating, the system approximately stays in the thermal state for the Floquet Hamiltonian with a gradually rising temperature.
Floquet theory
Hamiltonian (control theory)
Fermi's golden rule
Cite
Citations (25)
This chapter contains sections titled: Introduction Fourier Spectrum and Floquet Series Floquet Excitations and Floquet Modes Two-Dimensional Floquet Excitation Grating Beams from Geometrical Optics Floquet Mode and Guided Mode Summary References Problems
Floquet theory
Mode (computer interface)
Cite
Citations (4)
This letter presents a generalization of the Drude conductivity for systems which are exposed to periodic driving. The probe bias is treated perturbatively by using the Kubo formula, whereas the external driving is included non-perturbatively using the Floquet theory. Using a new type of four-times Green's functions disorder is approached diagrammatically, yielding a fully analytical expression for the Floquet-Drude conductivity. Furthermore, the Floquet Fermi's golden rule is generalized to $tt'$-Floquet states, connecting the Floquet-Dyson series with scattering theory for Floquet states. Our formalism allows for a direct application to numerous systems e.g. graphene or spin-orbit systems.
Floquet theory
Drude model
Kubo formula
Formalism (music)
Cite
Citations (17)
Білім берy қоғaмның экономикaлық дaмyының негізі, әлеyметтік тұрaқтылықтың фaкторлaрының бірі, хaлықтың рyхaни-aдaмгершілік әлеyетінің және интеллектyaлдық өсyінің қaйнaр көзі ретінде бaрлық yaқыттaрдa тaптырмaс құндылық болып есептеліп келеді. Aл қaзіргідей aдaм кaпитaлын қaлыптaстырy мен дaмытy мәселесін шешy негізгі міндет ретінде қaрaстырылaтын зaмaндa хaлықтың білімдік қaжеттіліктері өсіп, жоғaры, ортa aрнayлы, кәсіби қосымшa білім aлyғa үміткерлер сaны aртa түсyде. Бұғaн жayaп ретінде білім берy ұйымдaрының сaлaлaнyы aртып, әртүрлі типтегі оқy орындaрының сaны aртyдa, білім берyдің инфрaқұрылымы, бaсқaрy формaлaры, әдістемелік, ғылыми қызмет түрлері дaмyдa. Олaрды білім aлyшылaрдың жеке сұрaныстaры мен мүмкіндіктеріне бaғыттay күшейтілyде. Осығaн орaй білімнің сaпaсынa қойылaтын тaлaптaр aртып, бұл сaлaның әлеyметпен өзaрa әрекеттестігіне негізделген құрылымдық – қызметтік дaмyының көкейтестілігі aртyдa. Мaқaлaдa «серіктестік», «әлеyметтік серіктестік», «білімдегі әлеyметтік серіктестік» ұғым- дaрының мәні aшылып, олaрдың қaлыптaсy және дaмy үрдісіне шолy жaсaлaды, жоғaры оқy орындaрындa педaгогтaрды дaярлayдa әлеyметтік серіктестердің әлеyетін пaйдaлaнyдa бaсшылыққa aлынaтын ұстaнымдaр мен тиімді жолдaры сипaттaлaды. Түйін сөздер: серіктестік, әлеyметтік серіктестік, білімдегі әлеyметтік серіктестік, бірлескен әрекет ұстaнымдaры, әлеуметтік серіктестік әлеуеті. Обрaзовaние является основой экономического рaзвития обществa, одним из фaкторов социaль- ной стaбильности, источником дyховно-нрaвственного потенциaлa и интеллектyaльного ростa людей и во все временa считaлось незaменимой ценностью. И в нaстоящее время, когдa решение проблемы формировaния и рaзвития человеческого кaпитaлa рaссмaтривaется кaк основнaя зaдaчa, рaстyт обрaзовaтельные потребности людей, yвеличивaется количество желaющих полyчить высшее, среднее, специaльное, профессионaльное дополнительное обрaзовaние. В ответ нa это yсиливaется рaзветвленность обрaзовaтельных оргaнизaций, yвеличивaется количество обрaзовaтельных оргaни- зaций рaзличного типa, рaзвивaются инфрaстрyктyрa обрaзовaния, формы yпрaвления, методическaя и нayчнaя деятельность. Yсиливaется их ориентaция нa индивидyaльные потребности и возможности обyчaющихся. В связи с этим повышaются требовaния к кaчествy обрaзовaния, возрaстaет знaчение стрyктyрно-фyнкционaльного рaзвития этой сферы нa основе взaимодействия с обществом. В стaтье рaскрывaется знaчение понятий «пaртнерство», «социaльное пaртнерство», «социaльное пaртнерство в обрaзовaнии», рaссмaтривaется процесс их стaновления и рaзвития, описывaются рyко- водящие принципы и эффективные способы использовaния потенциaлa социaльных пaртнеров в подготовке педaгогических кaдров в высших yчебных зaведениях. Ключевые словa: партнерство, социaльное пaртнерство, социaльное пaртнерство в обрaзовaнии, принципы совместного действия, поненциал социального партнерство. Education is the basis of the economic development of society, one of the factors of social stability, a source of spiritual and moral potential and intellectual growth of people and has always been considered an irreplaceable value. And at the present time, when the solution of the problem of the formation and development of human capital is considered as the main task, the educational needs of people are growing, the number of people wishing to receive higher, secondary, special, professional additional education is increasing. In response to this, the branching of educational organizations is increasing, the number of educational organizations of various types is increasing, the infrastructure of education, forms of management, methodological and scientific activities are developing. Their focus on the individual needs and capabilities of students is increasing. In this regard, the requirements for the quality of education are increasing, the importance of the structural and functional development of this sphere on the basis of interaction with society is increasing. The article reveals the meaning of the concepts of "partnership", "social partnership", "social partnership in education", examines the process of their formation and development, describes the guidelines and effective ways to use the potential of social partners in the training of teachers in higher educational institutions. Keywords: partnership, social partnership, social partnership in education, principles of joint action, the potential of social partnership.
Cite
Citations (0)
As many-body Floquet theory becomes more popular, it is important to find ways to connect theory with experiment. Theoretical calculations can have a periodic driving field that is always on, but experiment cannot. Hence, we need to know how long a driving field is needed before the system starts to look like the periodically driven Floquet system. We answer this question here for noninteracting band electrons in the infinite-dimensional limit by studying the properties of the system under pulsed driving fields and illustrating how they approach the Floquet limit. Our focus is on determining the minimal pulse lengths needed to recover the qualitative and semiquantitative Floquet theory results.
Floquet theory
Lattice (music)
Cite
Citations (23)
Periodic modulation of the Hamiltonian offers a powerful method to engineer Floquet band properties and create new gaps capable of hosting Floquet edge modes. However, there have been limited studies exploring the performance of Floquet edge modes in terms of dynamic control and interference properties. Here, we experimentally implement an array of staggered coupled plasmonic waveguides operating at microwave frequencies based on the Floquet Su-Schrieffer-Heeger model. Our observations reveal the coexistence of Floquet zero and $\ensuremath{\pi}$ modes within a specific periodic range of the quasienergy spectrum. Through near-field experiments, we observe a subharmonic response of the electric field propagation in the microwave, which is confirmed by the interference of eigenfields associated with the two topological end modes. Our work not only provides an approach for studying time-dependent Floquet Hamiltonians, but also opens the door to exploring period-doubling nonequilibrium topological phases.
Floquet theory
Hamiltonian (control theory)
Cite
Citations (4)
We show that one-dimensional Floquet trimer arrays with periodically oscillating waveguides support two different and co-existing types of topological Floquet edge states in two different topological gaps in the Floquet spectrum. In these systems nontrivial topology is introduced by longitudinal periodic oscillations of the waveguide centers, leading to the formation of Floquet edge states in a certain range of oscillation amplitudes despite the fact that the structure spends half of the period in ``instantaneously'' nontopological phase, and only during the other half-period it is ``instantaneously'' topological. Two co-existing Floquet edge states are characterized by different phase relations between bright spots in the unit cell---in one mode these spots are in phase, while in the other mode they are out of phase. We show that in focusing nonlinear medium topological Floquet edge solitons, representing exactly periodic nonlinear localized Floquet states, can bifurcate from both these types of linear edge states. Both types of Floquet edge solitons can be stable and can be created dynamically using two-site excitations.
Floquet theory
Oscillation (cell signaling)
Waveguide
Cite
Citations (8)
Periodically driven (Floquet) phases are attractive due to their ability to host unique physical phenomena with no static counterparts. We propose a general approach in nontrivially devising a square-root version of existing Floquet phases, applicable both in noninteracting and interacting setting. The resulting systems are found to yield richer physics that is otherwise absent in the original counterparts and is robust against parameter imperfection. These include the emergence of Floquet topological superconductors with arbitrarily many zero, $\pi$, and $\pi/2$ edge modes, as well as $4T$-period Floquet time crystals in disordered and disorder-free systems ($T$ being the driving period). Remarkably, our approach can be repeated indefinitely to obtain a 2nth-root version of a given system, thus allowing for the discovery and systematic construction of a family of exotic Floquet phases.
Floquet theory
Square root
Square (algebra)
Cite
Citations (0)
Dynamical quantum phase transitions (DQPTs) are manifested by time-domain nonanalytic behaviors of many-body systems.Introducing a quench is so far understood as a typical scenario to induce DQPTs.In this work, we discover a novel type of DQPTs, termed "Floquet DQPTs", as intrinsic features of systems with periodic time modulation.Floquet DQPTs occur within each period of continuous driving, without the need for any quenches.In particular, in a harmonically driven spin chain model, we find analytically the existence of Floquet DQPTs in and only in a parameter regime hosting a certain nontrivial Floquet topological phase. The Floquet DQPTs are further characterized by a dynamical topological invariant defined as the winding number of the Pancharatnam geometric phase versus quasimomentum.These findings are experimentally demonstrated with a single spin in diamond.This work thus opens a door for future studies of DQPTs in connection with topological matter.
Floquet theory
Cite
Citations (90)
Periodically driven (Floquet) phases are attractive due to their ability to host unique physical phenomena with no static counterparts. We propose a general approach in nontrivially devising a square-root version of existing Floquet phases, applicable both in noninteracting and in interacting setting. The resulting systems are found to yield richer physics that is otherwise absent in the original counterparts and is robust against parameter imperfection. These include the emergence of Floquet topological superconductors with arbitrarily many zero, $\ensuremath{\pi}$, and $\ensuremath{\pi}/2$ edge modes, as well as $4T$-period Floquet time crystals in disordered and disorder-free systems ($T$ being the driving period). Remarkably, our approach can be repeated indefinitely to obtain a ${2}^{n}\mathrm{th}$-root version of any periodically driven system, thus, allowing for the discovery and systematic construction of exotic Floquet phases.
Floquet theory
Square root
Square (algebra)
Cite
Citations (18)