Effect of weight loss by a low-fat diet and a low-carbohydrate diet on peptide YY levels
53
Citation
11
Reference
10
Related Paper
Citation Trend
Keywords:
Peptide YY
Weight change
Digestion
Carbohydrate Metabolism
Health Benefits
Cite
Citations (2)
Aim To determine if an insulin dose calculated for a meal containing 60 g carbohydrate maintains postprandial glycaemic control for meals containing 40, 50, 70 or 80 g carbohydrate. Methods Thirty-four young people (age range 8.5–17.7 years) using intensive insulin therapy consumed five test breakfasts with equivalent fat, protein and fibre contents but differing carbohydrate quantities (40, 50, 60, 70 and 80 g of carbohydrate). The preprandial insulin dose was the same for each meal, based on the subject’s usual insulin:carbohydrate ratio for 60 g carbohydrate. Continuous glucose monitoring was used to monitor postprandial glucose over 180 min. Results The 40-g carbohydrate meal resulted in significantly more hypoglycaemia than the other meals (P = 0.003). There was a one in three chance of hypoglycaemia between 120 and 180 min if an insulin dose for 60 g carbohydrate was given for 40 g carbohydrate. The glucose levels of subjects on the 80-g meal were significantly higher than the 60- and 70-g carbohydrate meals at all time points between 150 and 180 min (P < 0.01). Subjects consuming the 80-g meal were more likely to have significant hyperglycaemia (blood glucose levels ‡ 12 mmol ⁄ l) compared with the other meals (P < 0.001). Conclusions In patients using intensive insulin therapy, an individually calculated insulin dose for 60 g carbohydrate results in postprandial hypoglycaemia or hyperglycaemia for meals containing 40 and 80 g carbohydrate. To calculate mealtime insulin in order to maintain postprandial control, carbohydrate estimations should be within 10 g of the actual meal carbohydrate.
Cite
Citations (0)
Carbohydrate Metabolism
Gastric inhibitory polypeptide
Cite
Citations (73)
Diabet. Med. 29, e21–e24 (2012) Abstract Aim To determine if an insulin dose calculated for a meal containing 60 g carbohydrate maintains postprandial glycaemic control for meals containing 40, 50, 70 or 80 g carbohydrate. Methods Thirty‐four young people (age range 8.5–17.7 years) using intensive insulin therapy consumed five test breakfasts with equivalent fat, protein and fibre contents but differing carbohydrate quantities (40, 50, 60, 70 and 80 g of carbohydrate). The preprandial insulin dose was the same for each meal, based on the subject’s usual insulin:carbohydrate ratio for 60 g carbohydrate. Continuous glucose monitoring was used to monitor postprandial glucose over 180 min. Results The 40‐g carbohydrate meal resulted in significantly more hypoglycaemia than the other meals ( P = 0.003). There was a one in three chance of hypoglycaemia between 120 and 180 min if an insulin dose for 60 g carbohydrate was given for 40 g carbohydrate. The glucose levels of subjects on the 80‐g meal were significantly higher than the 60‐ and 70‐g carbohydrate meals at all time points between 150 and 180 min ( P < 0.01). Subjects consuming the 80‐g meal were more likely to have significant hyperglycaemia (blood glucose levels ≥ 12 mmol/l) compared with the other meals ( P < 0.001). Conclusions In patients using intensive insulin therapy, an individually calculated insulin dose for 60 g carbohydrate results in postprandial hypoglycaemia or hyperglycaemia for meals containing 40 and 80 g carbohydrate. To calculate mealtime insulin in order to maintain postprandial control, carbohydrate estimations should be within 10 g of the actual meal carbohydrate.
Carbohydrate Metabolism
Cite
Citations (73)
Little is known about the transition in behaviors from short-term weight loss to maintenance of weight loss. We wanted to determine how short-term and long-term weight loss and patterns of weight change were associated with intervention behavioral targets. This analysis includes overweight/obese participants in active treatment (n = 507) from the previously published PREMIER trial, an 18-month, multicomponent lifestyle intervention for blood pressure reduction, including 33 intervention sessions and recommendations to self-monitor food intake and physical activity daily. Associations between behaviors (attendance, recorded days/week of physical activity, food records/week) and weight loss of ≥5% at 6 and 18 months were examined using logistic regression. We characterized the sample using 5 weight change categories (weight gained, weight stable, weight loss then relapse, late weight loss, and weight loss then maintenance) and analyzed adherence to the behaviors for each category, comparing means with ANOVA. Participants lost an average of 5.3 ± 5.6 kg at 6 months and 4.0 ± 6.7 kg (4.96% of body weight) by 18 months. Higher levels of attendance, food record completion, and recorded days/week of physical activity were associated with increasing odds of achieving 5% weight loss. All weight change groups had declines in the behaviors over time; however, compared to the other four groups, the weight loss/maintenance group (n = 154) had statistically less significant decline in number of food records/week (48%), recorded days/week of physical activity (41.7%), and intervention sessions attended (12.8%) through 18 months. Behaviors associated with short-term weight loss continue to be associated with long-term weight loss, albeit at lower frequencies. Minimizing the decline in these behaviors may be important in achieving long-term weight loss.
Weight change
Attendance
Cite
Citations (40)
Background: The variability of postprandial plasma glucose is an independent risk factor for diabetes. The type and amount of carbohydrate may be important determinants of glycemic control. The aim of the study was to compare the effects of different proportions of carbohydrate in breakfast on postprandial blood glucose fluctuations in impaired glucose regulation (IGR) and normal glucose tolerance (NGT) subjects. Subjects and Methods: This is a cross-sectional study of two groups including 55 subjects with IGR and 78 individuals with NGT. Their recorded breakfast was sorted into low-carbohydrate (LC) (carbohydrate <45%), medium-carbohydrate (MC) (carbohydrate 45–65%), and high-carbohydrate (HC) (carbohydrate >65%) meals according to the proportion of carbohydrate. Glucose concentrations were continuously measured with a continuous glucose monitoring system, and parameters such as the incremental area under the curve (iAUC) of glucose and postprandial glucose excursion (PPGE) were calculated to evaluate postprandial glucose fluctuations. Results: The postprandial fluctuations of glucose increased gradually with increased proportions of carbohydrate in breakfast in both IGR and NGT subjects. For the MC and HC meals, iAUC, PPGE, postprandial glucose spike (PGS), and mean blood glucose were significantly greater than those in the NGT group (P<0.05), respectively. The median time to PGS and the time period in which glucose concentrations decreased to baseline after the MC and HC meals in the IGR group were significantly longer than those in the NGT group (P<0.01), respectively. Compared with the NGT subjects for the HC meal, the IGR subjects consuming the MC meal had greater PGS, range of glucose concentrations, SD, and PPGE (P<0.05). Conclusions: The proportion of carbohydrate in breakfast contributes to glucose excursions in the NGT and IGR subjects. In the IGR subjects, a HC meal should be avoided and a LC meal should be recommended to prevent development of diabetes.
Carbohydrate Metabolism
Cite
Citations (26)
Weight change
Weight management
Cite
Citations (17)
Weight change
Weight management
Cite
Citations (21)
There is concern that replacement of dietary fat with carbohydrate may not reduce the overall risk of CHD because this replacement strategy elevates postprandial plasma triacylglycerol (TAG) concentrations. The present study was designed to test the hypothesis that daily exercise can offset the augmented postprandial lipaemia associated with a short-term high-carbohydrate diet. Nine healthy, normolipidaemic men aged 33 (SD 4) YEARS CONSUMED A TEST MEAL (G/KG BODY MASS; 1·2 FAT, 1·1 CARBOHYDRATE, 0·2 PROTEIN) ON THREE OCCASIONS: AFTER 3 D ON A TYPICAL WESTERN DIET (46, 38 AND 16 % ENERGY FROM CARBOHYDRATE, FAT AND PROTEIN RESPECTIVELY); AFTER 3 D ON AN ISOENERGETIC HIGH-CARBOHYDRATE DIET (CORRESPONDING VALUES: 70, 15 AND 15 % ENERGY); AFTER 3 D ON THE SAME HIGH-CARBOHYDRATE DIET WITH 30 MIN MODERATE EXERCISE DAILY. FASTING PLASMA TAG CONCENTRATION WAS HIGHER AFTER THE HIGH-CARBOHYDRATE DIET (1·15 (se 0·16) mmol/l) than after the Western diet (0·83 (se 0·10) mmol/l; P=0·03). Similarly, postprandial lipaemia (6 h total area under plasma TAG concentration v. time curve) was higher after the high-carbohydrate diet (12·54 (se 2·07) mmol/l·h) than after the Western diet (9·30 (se 1·30) mmol/l·h; P=0·004). The addition of exercise to the high-carbohydrate diet significantly reduced postprandial lipaemia (9·95 (se 1·94) mmol/l·h; P=0·01 when compared with the high-carbohydrate diet) but not fasting TAG concentration (1·02 (se 0·24) mmol/l). In conclusion, daily exercise prevented the augmentation of postprandial lipaemia attributable to the short-term high-carbohydrate diet and, thus, exercise may be a powerful adjunct to dietary change.
Cite
Citations (29)