Exogenous stromal cell-derived factor-1 induces modest leukocyte recruitment in vivo
8
Citation
58
Reference
10
Related Paper
Citation Trend
Abstract:
Stromal cell-derived factor-1 (SDF-1; CXCL12), a CXC chemokine, has been found to be involved in inflammation models in vivo and in cell adhesion, migration, and chemotaxis in vitro. This study aimed to determine whether exogenous SDF-1 induces leukocyte recruitment in mice. After systemic administration of SDF-1alpha, expression of the adhesion molecules P-selectin and VCAM-1 in mice was measured using a quantitative dual-radiolabeled Ab assay and leukocyte recruitment in various tissues was evaluated using intravital microscopy. The effect of local SDF-1alpha on leukocyte recruitment was also determined in cremaster muscle and compared with the effect of the cytokine TNFalpha and the CXC chemokine keratinocyte-derived chemokine (KC; CXCL1). Systemic administration of SDF-1alpha (10 microg, 4-5 h) induced upregulation of P-selectin, but not VCAM-1, in most tissues in mice. It caused modest leukocyte recruitment responses in microvasculature of cremaster muscle, intestine, and brain, i.e., an increase in flux of rolling leukocytes in cremaster muscle and intestines, leukocyte adhesion in all three tissues, and emigration in cremaster muscle. Local treatment with SDF-1alpha (1 microg, 4-5 h) reduced leukocyte rolling velocity and increased leukocyte adhesion and emigration in cremasteric venules, but the responses were much less profound than those elicited by KC or TNFalpha. SDF-1alpha-induced recruitment was dependent on endothelial P-selectin, but not P-selectin on platelets. We conclude that the exogenous SDF-1alpha enhances leukocyte-endothelial cell interactions and induces modest and endothelial P-selectin-dependent leukocyte recruitment.Keywords:
Cremaster muscle
Intravital microscopy
CXCL1
Reactive oxygen species (ROS) are generated at sites of inflammation and injury, and at low levels, ROS can function as signaling molecules participating as signaling intermediates in regulation of fundamental cell activities such as cell growth and cell adaptation responses, whereas at higher concentrations, ROS can cause cellular injury and death. The vascular endothelium, which regulates the passage of macromolecules and circulating cells from blood to tissues, is a major target of oxidant stress, playing a critical role in the pathophysiology of several vascular diseases and disorders. Specifically, oxidant stress increases vascular endothelial permeability and promotes leukocyte adhesion, which are coupled with alterations in endothelial signal transduction and redox-regulated transcription factors such as activator protein-1 and nuclear factor-kappaB. This review discusses recent findings on the cellular and molecular mechanisms by which ROS signal events leading to impairment of endothelial barrier function and promotion of leukocyte adhesion. Particular emphasis is placed on the regulation of cell-cell and cell-surface adhesion molecules, the actin cytoskeleton, key protein kinases, and signal transduction events.
Endothelial Dysfunction
Cite
Citations (805)
Intravital microscopy
Cremaster muscle
P-selectin
Cite
Citations (41)
It is well acknowledged that proinflammatory stimulation during acute hyperglycemia is able to aggravate inflammatory diseases. However, the mechanisms of proinflammatory effects of glucose are controversially discussed. We investigated leukocyte recruitment after intravenous injection of glucose in different inflammatory models using intravital microscopy. Flow chamber experiments, expression analysis, functional depletion, and knockout of key adhesion molecules gave mechanistic insight in involved pathways. We demonstrated that a single injection of glucose rapidly increased blood glucose levels in a dose-dependent manner. Notably, during tumor necrosis factor (TNF) α -induced inflammation leukocyte recruitment was not further enhanced by glucose administration, whereas glucose injection profoundly augmented leukocyte adhesion and transmigration into inflamed tissue in the trauma model, indicating that proinflammatory properties of glucose are stimulus dependent. Experiments with functional or genetic inhibition of the chemokine receptor CXCR2, intercellular adhesion molecule 1 (ICAM1), and lymphocyte function antigen 1 (LFA1) suggest that keratino-derived-chemokine CXCL1-triggered interactions of ICAM1 and LFA1 are crucially involved in the trauma model of inflammation. The lacking effect of glucose on β 2 integrin expression and on leukocyte adhesion in dynamic flow chamber experiments argues against leukocyte-driven underlying mechanisms and favours an endothelial pathway since endothelial ICAM1 expression was significantly upregulated in response to glucose.
Proinflammatory cytokine
CXCL1
Intravital microscopy
CXCL2
Cite
Citations (11)
Internalization
Intercellular adhesion molecule
Rac GTP-Binding Proteins
Cite
Citations (10)
Purpose of review The purpose of this article is to describe the function of the vascular cell adhesion and signaling molecule, platelet/endothelial cell adhesion molecule-1 (PECAM-1), in endothelial cells, with special emphasis on its role in maintaining and restoring the vascular permeability barrier following disruption of the endothelial cell junction. Recent findings In addition to its role as an inhibitory receptor in circulating platelets and leukocytes, PECAM-1 is highly expressed at endothelial cell–cell junctions, where it functions as an adhesive stress-response protein to both maintain endothelial cell junctional integrity and speed restoration of the vascular permeability barrier following inflammatory or thrombotic challenge. Summary Owing to the unique ability of antibodies that bind the membrane proximal region of the extracellular domain to trigger conformational changes leading to affinity modulation and homophilic adhesion strengthening, PECAM-1 might be an attractive target for treating vascular permeability disorders.
Vascular permeability
CD31
Cite
Citations (458)
Regulation of the adhesion molecules expression by cytokine in vascular endothelial cells was investigated. Human umbilical vein endothelial cells (HUVEC) were stimulated with cytokines, TNF-α (1-250 U/ml) or IL-1β (0.1-50 U/ml) for 24 h. HUVEC were also cultured with cytokines, TNF-α (100 U/ml) or IL-1β (10 U/ml), for 4-72 h, cell surface expression of adhesion molecules (ICAM-1 and VCAM-1) were detected and quantitated by immunocytochemical methods and computerized imaging analysis technique. Adhesion molecules expression were up-regulated by TNF-α, IL-1β in a concentration- and time-dependent manner. Some significant differences were observed between the effects of cytokines on the ICAM-1 and on VCAM-1 expression. Cytokines might directly induce the expression of ICAM-1 and VCAM-1 in vascular endothelial cells. Our observations indicate differential functions of the two adhesion molecules during the evolution of inflammatory responses in stroke.
VCAM-1
Cite
Citations (5)
VCAM-1
Endothelial Activation
Monocyte
Endothelial Dysfunction
Cite
Citations (0)
Endothelial cells express a variety of adhesive receptors that regulate their adhesion to extracellular matrix and organization of cell-cell junctions. Most of the endothelial cell receptors for matrix proteins, characterized so far, belong to the integrin superfamily. Endothelial cells, as many other cell types, have many different integrins on their surface. This indicates that the interaction with matrix proteins is a complex phenomenon that requires multiple (and possibly redundant) recognition mechanisms. We have only a limited knowledge of the structures involved in endothelial cell-cell junctions. Integrins have been found to be localized in these structures too. This suggests that they can play a role also in this homotypic type of cell interaction. Other molecules, however, that are structurally and functionally distinct from integrins have been found in endothelial cell-to-cell contacts. The reciprocal role of these proteins remains to be fully defined.
Cell–cell interaction
Cell surface receptor
Cell type
Matrix (chemical analysis)
Cite
Citations (18)
Intravital microscopy
Cremaster muscle
P-selectin
Cite
Citations (0)
Leukocyte adhesion is mediated totally and transendothelial migration partially by heterotypic interactions between the β 1 - and β 2 -integrins on the leukocytes and their ligands, Ig-like cell adhesion molecules (Ig-CAM), VCAM-1, and ICAM-1, on the endothelium. Both integrins and Ig-CAMs are known to have signaling capacities. In this study we analyzed the role of VCAM-1-mediated signaling in the control of endothelial cell-cell adhesion and leukocyte transendothelial migration. Antibody-mediated cross-linking of VCAM-1 on IL-1β-activated primary human umbilical vein endothelial cells (pHUVEC) induced actin stress fiber formation, contractility, and intercellular gaps. The effects induced by VCAM-1 cross-linking were inhibited by C3 toxin, indicating that the small GTPase p21Rho is involved. In addition, the effects of VCAM-1 were accompanied by activation of Rac, which we recently showed induce intercellular gaps in pHUVEC in a Rho-dependent fashion. With the use of a cell-permeable peptide inhibitor, it was shown that Rac signaling is required for VCAM-1-mediated loss of cell-cell adhesion. Furthermore, VCAM-1-mediated signaling toward cell-cell junctions was accompanied by, and dependent on, Rac-mediated production of reactive oxygen species and activation of p38 MAPK. In addition, it was found that inhibition of Rac-mediated signaling blocks transendothelial migration of monocytic U937 cells. Together, these data indicate that VCAM-1-induced, Rac-dependent signaling plays a key role in the modulation of vascular-endothelial cadherin-mediated endothelial cell-cell adhesion and leukocyte extravasation.
VCAM-1
Cell Signaling
Cite
Citations (230)