Prevalence of avian haematozoa in wild birds in a high-altitude forest in Japan
Takayuki ImuraYuka SuzukiHiroko EjiriYukita SatoKen IshidaDaisuke SUMIYAMAKoichi MurataMasayoshi Yukawa
48
Citation
24
Reference
10
Related Paper
Citation Trend
Keywords:
Leucocytozoon
Haemoproteus
Haemoproteus
Leucocytozoon
Plasmodium (life cycle)
Cite
Citations (17)
Avian haemosporidians are widespread and diverse and are classified in the genera Plasmodium, Haemoproteus, Leucocytozoon, and Fallisia. These species are known to cause haemosporidiosis and decreased fitness of their hosts. Despite the high diversity of habitats and animal species in Iran, only few studies have addressed avian haemosporidians in this geographic area. This study was performed in the south and southeast of Iran during the bird breeding seasons in 2017 and 2018, with the aim to partly fill in this gap. Blood samples of 237 passerine birds belonging to 41 species and 20 families were collected. Parasite infections were identified using a nested PCR protocol targeting a 479-base-pair fragment of the mitochondrial cytochrome b (cytb) gene of Haemoproteus, Plasmodium and Leucocytozoon species. The overall prevalence of haemosporidian parasites was 51.1%, and 55 different lineages were identified, of which 15 cytb lineages were new globally. The lineages of Haemoproteus predominated (63.6% of all detected lineages), followed by Leucocytozoon and Plasmodium. Nineteen new host records of haemosporidian cytb lineages were identified, and the majority of them were found in resident bird species, indicating local transmission. Thirteen co-infections (9.8% of infected individuals) of Haemoproteus and Leucocytozoon parasites in seven host species were observed. This study shows the presence of active local transmission of parasites to resident bird species in the southeast of Iran and contributes to the knowledge on haemosporidian parasite biodiversity in this poorly studied region of the world.
Haemoproteus
Leucocytozoon
Plasmodium (life cycle)
Avian Malaria
Cite
Citations (6)
Avian blood parasites have been intensively studied using morphological methods with limited information on their host specificity and species taxonomic status. Now the analysis of gene sequences, especially the mitochondrial cytochrome b gene of the avian haemosporidian species of Haemoproteus, Plasmodium, and Leucocytozoon, offers a new tool to review the parasite specificity and status. By comparing morphological and genetic techniques, we observed nearly the same overall prevalence of haemosporidian parasites by microscopy (19.8%) and polymerase chain reaction (PCR) (21.8%) analyses. However, in contrast to the single valid Leucocytozoon species (L. toddi) in the Falconiformes we detected 4 clearly distinctive strains by PCR screening. In the Strigiformes, where the only valid Leucocytozoon species is L. danilewskyi, we detected 3 genetically different strains of Leucocytozoon spp. Two strains of Haemoproteus spp. were detected in the birds of prey and owls examined, whereas the strain found in the tawny owl belonged to the morphospecies Haemoproteus noctuae. Three Plasmodium spp. strains that had already been found in Passeriformes were also detected in the birds of prey and owls examined here, supporting previous findings indicating a broad and nonspecific host spectrum bridging different bird orders.
Leucocytozoon
Haemoproteus
Plasmodium (life cycle)
Cite
Citations (90)
Blood parasites may act as modulators of their hosts’ ecology, life histories and fitness. We studied the prevalence of Plasmodium sp., Haemoproteus sp. and Leucocytozoon sp. and their effects on morphological, biochemical and haematological variables and on breeding effort of Great Tits Parus major . Total prevalence (percentage of individuals infected by any parasite) ranged from 7.7% to 61.1%. There was an overall positive association in prevalence between the three haematozoan parasites. No effect of sex or age on infection status was observed. Negative impacts of infection on physiological condition depended largely on year and/or season and included effects on body condition index, plasma protein and haemoglobin index. There were also indications that parasite infection increased immune response and stress levels and activated antioxidant defence mechanisms. Males with higher fledging success had a higher probability of Haemoproteus infection, and females laying heavier eggs had a higher probability of Plasmodium infection. However, clutch size was negatively associated with the probability of infection by Leucocytozoon and Haemoproteus . Surprisingly, males raising second broods had a lower prevalence of both Haemoproteus and Leucocytozoon . Only 5.7% of first‐brood nestlings were infected, but those in infected nestboxes had a lower heterophil/lymphocyte ratio. This study confirms the pathogenicity of blood parasites to the host by demonstrating negative effects of infection on both physiology and breeding performance.
Haemoproteus
Leucocytozoon
Plasmodium (life cycle)
Fledge
Avian clutch size
Cite
Citations (62)
Avian hemosporidian parasites of the genera Haemoproteus, Plasmodium, and Leucocytozoon are transmitted by different dipteran vectors. In the present work, we looked for the presence of these parasites in 47 birds from 12 families, which were sampled in the migratory corridor Paso de Portachuelo, located at the Henri Pittier National Park, Venezuela. The presence of the parasites was evidenced by amplification of a region of 471 bp of their cytochrome b gene. This region of the marker presents enough polymorphism to identify most of the mitochondrial lineages. Therefore, the obtained amplicons were sequenced, not only to identify the genus of the parasites sampled, but also to analyze their genetic diversity in the study area. The overall parasite prevalence was low (11%). We reported, for the first time, Plasmodium in birds of the species Formicarius analis and Chamaeza campanisona (Formicariidae) and Haemoproteus in Geotrygon linearis (Columbidae). A phylogenetic tree was generated using the Haemoproteus, Plasmodium, and Leucocytozoon sequences obtained in this study, together with representative sequences from previous studies. The highest genetic diversities between the two Haemoproteus lineages (11.70%) and among the three Plasmodium lineages (7.86%) found in this study are also similar to those found when lineages reported in the literature were used. These results indicate that in the migratory corridor Paso de Portachuleo, representative parasite lineages are found, making this location an attractive location for future studies.
Haemoproteus
Leucocytozoon
Plasmodium (life cycle)
Lineage (genetic)
Cite
Citations (11)
Avian haemosporidian infections are widespread and can result in the decline of wild bird populations or in some cases contribute to extinction of species. We determined the prevalence and genetic diversity of avian haemosporidia in 93 samples from 22 landbird species from South Africa (N = 76) and West Africa (N = 17), of which six are intra-African migrants and one is a Palearctic migrant. The samples were analysed for the presence of avian haemosporidian DNA using real-time quantitative PCR (qPCR) and nested PCR assays targeting specific mitochondrial genes of these parasites. The cytochrome b (cytb) gene was sequenced for all samples that tested positive and phylogenetic analysis was conducted in order to determine the relationship of the new sequences with previously published sequences from the MalAvi database. The overall prevalence of avian haemosporidiosis was 68.82% (95% CI: 56.4%-78.87%) and 82.80% (95% CI: 65.68%-86.11%) as determined by qPCR and nested PCR respectively. Eighteen (19.36%; 95% CI; 10.78%-29.97%) samples had mixed infections. Infection prevalence of all haemosporidian spp. were significantly higher (p < 0.05) in samples from West Africa. Forty-six mitochondrial sequences obtained from 14 avian species grouped into three distinct clusters of Haemoproteus (36), Leucocytozoon (8) and Plasmodium (2). These represent eight published and nine new cytb lineages. The most common lineage was Haemoproteus sp. (VIMWE1) which was identified in two bird species from West Africa and seven bird species from South Africa. This study adds to our knowledge of host-parasite relationships of avian haemosporidia of Afrotropical birds.
Haemoproteus
Leucocytozoon
Plasmodium (life cycle)
Lineage (genetic)
Cite
Citations (14)
Haemoproteus
Plasmodium (life cycle)
Avian Malaria
Leucocytozoon
Parasitology
Cite
Citations (97)
It has been suggested that blood parasites are a source of physiological stress for avian hosts in the wild. We report the first experimental evidence relating blood parasite infection to the physiological stress responsein a wild avian population. We reduced through medication the intensity of infection by Haemoproteus majoris and the prevalence of infection by Leucocytozoon majoris in half of a sample of female blue tits (Parus caeruleus). Results show that (i) control females had a higher final level of the stress protein HSP60 than medicated ones, (ii) the initial immunoglobulin level was negatively correlated with final HSP60 level, (iii) control females had a lower final body mass than medicated ones, body mass being negatively correlated with the number of blowfly pupae in the nest only for control females, and (iv) final female body mass was positively correlated with nestling tarsus length only for control females, which produced nestlings with shorter tarsi than medicated females. Responses of HSPs to parasitism, and associations with aspects of immune function and condition, suggest that the stress response may allow blue tits to maintain blood parasites under control during reproductive stress.
Leucocytozoon
Haemoproteus
Cyanistes
Cite
Citations (42)
Abstract We used a nested PCR protocol to examine the genetic diversity of cytochrome b (cyt b) lineages from blood parasites of the genera Plasmodium and Haemoproteus in birds in Bulgaria. In total, 460 birds of 43 species and 14 families (mostly passerines) were examined for the presence of infections. Of them, 267 were recognised as infected with haemosporidian parasites. Mixed infections were recorded in 24 individuals (9%). Besides the 24 individuals with mix infections, 114 (43%) were positive for Plasmodium spp. and 129 (48%) for Haemoproteus spp. We identified 52 genetic lineages of haemosporidian parasites: 38 of Haemoproteus and 14 of Plasmodium. Twelve new cyt b lineages of Haemoproteus were recorded; they occurred in the following hosts: grey-faced woodpecker (Picus canus), golden oriole (Oriolus oriolus), jay (Garrulus glandarius), barred warbler (Sylvia nisoria), song thrush (Turdus philomelos), spotted flycatcher (Muscicapa striata), spanish sparrow (Passer hispaniolensis), hawfinch (Coccothraustes coccothraustes), and cirl bunting (Emberiza cirlus). We also detected 22 new host records for previously known lineages. The most common lineage was SGS1 (Plasmodium relictum), which had a total prevalence of 14% and occurred in 8 host species belonging to 5 families. Three of the cyt b lineages of genus Haemoproteus (DURB1, DURB2 and SYNIS2) showed more than 5% divergence from all described morphologically lineages. These lineages probably represent at least 2 different morphospecies which remains to be identified.
Haemoproteus
Leucocytozoon
Plasmodium (life cycle)
Genetic divergence
Cite
Citations (98)
The diversity of waterbirds is threatened, and haemosporidian parasite infection is considered one of the most important causative factors. However, to date, only a few studies focusing on specific parasite species have been carried out, which cannot reflect the general patterns at the community level. To test whether the reported haemosporidian diversity in waterbirds is underestimated, we estimated the prevalence and lineage diversity of avian haemosporidian parasites in 353 waterbirds from 26 species in the Tumuji National Nature Reserve, Northeast China, as well as the host-parasite associations. According to the molecular analysis of cytochrome b (cyt b) barcode sequences, 28.3% of the birds were infected by 49 distinct parasite lineages, including 11 Plasmodium, 12 Haemoproteus, and 26 Leucocytozoon lineages, of which 39 were novel. The highest prevalence was contributed by Leucocytozoon (13.31%), followed by Plasmodium (13.03%) and Haemoproteus (4.25%), which suggested that waterbirds were infected to a lesser extent by Haemoproteus than by the other two genera. Among the most sampled birds, species belonging to Anatidae appeared to be susceptible to Leucocytozoon but resistant to Plasmodium, while Rallidae presented the opposite pattern. On the phylogenetic tree, most of the Leucocytozoon lineages detected in Anatidae clustered together and formed two well-supported clades, while lineages restricted to Gruidae were distantly related to other parasites in all three genera. SW5 was the most abundant lineage and therefore might be a major threat to waterbirds; among the hosts, the common coot harboured the highest diversity of parasite lineages and thus could act as a reservoir for potential transmission. This is the first study of avian haemosporidian infections in a wild waterbird community in Asia. Our findings have doubled the number of lineages recorded in waterbirds, broadened our understanding of host-parasite associations, and addressed the importance of studying haemosporidian infections in wild waterbird conservation.
Leucocytozoon
Haemoproteus
Anatidae
Avian Malaria
Lineage (genetic)
Plasmodium (life cycle)
Phylogenetic diversity
Cite
Citations (8)