logo
    Monoamine reuptake inhibition and nicotine receptor antagonism reduce amplitude and gating of auditory evoked potentials
    49
    Citation
    78
    Reference
    10
    Related Paper
    Citation Trend
    A sensory gating deficit has been repeatedly demonstrated in schizophrenia patients, especially for the P50 component of the auditory evoked response. In the present study, we investigate whether the N100 and P200 can be used as gating measures as well, and what kind of differences exist between normal controls and schizophrenia patients for these gating measures. We also explore whether gating is absent when sequences of non-identical stimuli are presented. It was found N100 and P200 showed significantly more gating and less day-to-day variability than P50 for normal subjects. Large day-to-day and inter-subject variability was observed in schizophrenia patients. The gating indexes for the non-identical stimuli were not significantly different from the corresponding indexes for identical stimuli
    N100
    Sensory gating
    P200
    Citations (9)
    Sensory gating describes neurological processes of filtering out redundant or unnecessary stimuli during information processing, and sensory gating deficits may contribute to the symptoms of schizophrenia. Among the three components of auditory event-related potentials reflecting sensory gating, P50 implies pre-attentional filtering of sensory information and N100/P200 reflects attention triggering and allocation processes. Although diminished P50 gating has been extensively documented in patients with schizophrenia, previous studies on N100 were inconclusive, and P200 has been rarely examined. This study aimed to investigate whether patients with schizophrenia have P50, N100, and P200 gating deficits compared with control subjects.Control subjects and clinically stable schizophrenia patients were recruited. The mid-latency auditory evoked responses, comprising P50, N100, and P200, were measured using the auditory-paired click paradigm without manipulation of attention. Sensory gating parameters included S1 amplitude, S2 amplitude, amplitude difference (S1-S2), and gating ratio (S2/S1). We also evaluated schizophrenia patients with PANSS to be correlated with sensory gating indices.One hundred four patients and 102 control subjects were examined. Compared to the control group, schizophrenia patients had significant sensory gating deficits in P50, N100, and P200, reflected by larger gating ratios and smaller amplitude differences. Further analysis revealed that the S2 amplitude of P50 was larger, while the S1 amplitude of N100/P200 was smaller, in schizophrenia patients than in the controls. We found no correlations between sensory gating indices and schizophrenia positive or negative symptom clusters. However, we found a negative correlation between the P200 S2 amplitude and Bell's emotional discomfort factor/Wallwork's depressed factor.Till date, this study has the largest sample size to analyze P50, N100, and P200 collectively by adopting the passive auditory paired-click paradigm without distractors. With covariates controlled for possible confounds, such as age, education, smoking amount and retained pairs, we found that schizophrenia patients had significant sensory gating deficits in P50-N100-P200. The schizophrenia patients had demonstrated a unique pattern of sensory gating deficits, including repetition suppression deficits in P50 and stimulus registration deficits in N100/200. These results suggest that sensory gating is a pervasive cognitive abnormality in schizophrenia patients that is not limited to the pre-attentive phase of information processing. Since P200 exhibited a large effect size and did not require additional time during recruitment, future studies of P50-N100-P200 collectively are highly recommended.
    N100
    Sensory gating
    P200
    Citations (56)
    The frontal hypothesis of aging predicts an age-related decline in cognitive functions requiring inhibitory or attentional regulation. In Alzheimer's disease, preattentive gating out of redundant information is impaired. Our study aimed to examine changes associated with physiological aging in both pre- and early attentive inhibition of recurrent acoustic information. Using a passive double-click paradigm, we recorded mid-latency (P30-P50) and late-latency (N100 and P200) evoked potentials in healthy young (26 ± 5 years) and healthy elderly subjects (72 ± 5 years). Physiological aging did not affect auditory gating in amplitude measures. Both age groups exhibited clear inhibition in preattentive P50 and attention-modulated (N100) components, whereas P30 was not attenuated. Irrespective of age, the magnitude of inhibition differed significantly, being most pronounced for N100 gating. Inhibition of redundant information seems to be preserved with physiological aging. Early attentive N100 gating showed the maximum effect. Further studies are warranted to evaluate sensory gating as a suitable biomarker of underlying neurodegenerative disease.
    N100
    Sensory gating
    P200
    Senescence
    Healthy aging
    Citations (31)
    P50, N100, and P200 auditory sensory gating could reflect mechanisms involved in protecting higher-order cognitive functions, suggesting relationships between sensory gating and cognition. This hypothesis was tested in 56 healthy adults who were administered the paired-click paradigm and two adaptations of the continuous performance test (Immediate/Delayed Memory Task, IMT/DMT). Stronger P50 gating correlated with fewer commission errors and prolonged reaction times on the DMT. Stronger N100 and P200 gating correlated with better discriminability on the DMT. Finally, prolonged P200 latency related to better discriminability on the IMT. These findings suggest that P50, N100, and P200 gating could be involved in protecting cognition by affecting response bias, behavioral inhibition, working memory, or attention.
    N100
    Sensory gating
    P200
    Sensory gating is a neurophysiological measure of inhibition that is characterized by a reduction in the P50, N100, and P200 event-related potentials to a repeated identical stimulus. It was proposed that abnormal sensory gating is involved in the neural pathological basis of some severe mental disorders. Since then, the prevailing application of sensory gating measures has been in the study of neuropathology associated with schizophrenia and so on. However, sensory gating is not only trait-like but can be also state-like, and measures of sensory gating seemed to be affected by several factors in healthy subjects. The objective of this work was to clarify the roles of acute stress and gender in sensory gating. Data showed acute stress impaired inhibition of P50 to the second click in the paired-click paradigm without effects on sensory registration leading to worse P50 sensory gating and disrupted attention allocation reflected by attenuated P200 responses than control condition, without gender effects. As for N100 and P200 gating, women showed slightly better than men without effects of acute stress. Data also showed slightly larger N100 amplitudes across clicks and significant larger P200 amplitude to the first click for women, suggesting that women might be more alert than men.
    Sensory gating
    N100
    P200
    Stimulus (psychology)
    Citations (3)
    The present study examined the effect of nicotine, alone and in combination with various drugs that act on the CNS, on ambulatory activity, a behavioral index for locomotion, in ICR (CD-1) strain mice. Nicotine at 0.25-2 mg/kg acutely reduced ambulatory activity of ICR mice. The effect of nicotine was similar to that of haloperidol and fluphenazine but distinct from that of bupropion and methylphenidate. ICR mice developed tolerance against the inhibitory effect of nicotine on ambulatory activity when nicotine was repeatedly administered. This effect was also distinct from bupropion and methylphenidate as they produced augmentation of their ambulation-stimulating effects in ICR mice. Nicotine reduced the ambulation-stimulating effects of bupropion and methylphenidate as well as haloperidol and fluphenazine. Taken together, nicotine exhibited unusual effects as a psychostimulant on ambulatory activity in ICR mice.
    Fluphenazine
    Bupropion
    Citations (16)