logo
    Organization of the Presynaptic Active Zone by ERC2/CAST1-Dependent Clustering of the Tandem PDZ Protein Syntenin-1
    51
    Citation
    30
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Presynaptic active zones contain a cytoskeletal matrix called the CAZ, which is thought to play a critical role in the regulation of active zone formation and neurotransmitter release. Recent studies have identified several CAZ components, but little is known about how they contribute to the molecular organization of active zones. Here, we report a novel PDZ [postsynaptic density-95/Discs large/zona occludens-1] interaction between the CAZ protein ERC2/CAST1 and the tandem PDZ protein syntenin-1, which is known to associate with diverse synaptic proteins, including glutamate receptor subunits, SynCAM, and β-neurexin. This interaction promotes the localization of syntenin-1 at presynaptic ERC2 clusters. In addition to the PDZ interaction, multimerization of both ERC2 and syntenin-1 mediates syntenin-1 clustering. These results suggest that ERC2 promotes presynaptic syntenin-1 clustering by two distinct mechanisms and that syntenin-1 may contribute to the molecular organization of active zones by linking ERC2 and other CAZ components to diverse syntenin-1-associated synaptic proteins.
    Keywords:
    PDZ domain
    Tandem
    PDZ domains are protein-protein interaction modules that organize intracellular signaling complexes. Most PDZ domains recognize specific peptide motifs followed by a required COOH-terminus. However, several PDZ domains have been found which recognize specific internal peptide motifs. The best characterized example is the syntrophin PDZ domain which, in addition to binding peptide ligands with the consensus sequence -E-S/T-X-V-COOH, also binds the neuronal nitric oxide synthase (nNOS) PDZ domain in a manner that does not depend on its precise COOH-terminal sequence. In the structure of the syntrophin-nNOS PDZ heterodimer complex, the two PDZ domains interact in a head-to-tail fashion, with an internal sequence from the nNOS PDZ domain binding precisely at the peptide binding groove of the syntrophin PDZ domain. To understand the energetic basis of this alternative mode of PDZ recognition, we have undertaken an extensive mutagenic and biophysical analysis of the nNOS PDZ domain and its interaction with the syntrophin PDZ domain. Our data indicate that the presentation of the nNOS internal motif within the context of a rigid beta-hairpin conformation is absolutely essential to binding; amino acids crucial to the structural integrity of the hairpin are as important or more important than residues that make direct contacts. The results reveal the general rules of PDZ recognition of diverse ligand types.
    PDZ domain
    Citations (126)
    The PDZ protein interaction domain of neuronal nitric oxide synthase (nNOS) can heterodimerize with the PDZ domains of postsynaptic density protein 95 and syntrophin through interactions that are not mediated by recognition of a typical carboxyl-terminal motif. The nNOS-syntrophin PDZ complex structure revealed that the domains interact in an unusual linear head-to-tail arrangement. The nNOS PDZ domain has two opposite interaction surfaces-one face has the canonical peptide binding groove, whereas the other has a beta-hairpin "finger." This nNOS beta finger docks in the syntrophin peptide binding groove, mimicking a peptide ligand, except that a sharp beta turn replaces the normally required carboxyl terminus. This structure explains how PDZ domains can participate in diverse interaction modes to assemble protein networks.
    PDZ domain
    Postsynaptic density
    Citations (531)
    PDZ domains mediate protein interactions primarily through either classical recognition of carboxyl‐terminal motifs or PDZ/PDZ domain associations. Several studies have also described internal modes of PDZ recognition, most of which depend on β‐finger structures. Here, we describe a novel interaction between the PDZ domain of nNOS and Vac14, the activator of the PtdIns(3) P 5‐kinase PIKfyve. Binding assays using various Vac14 deletion constructs revealed a β‐finger independent interaction that is based on a novel internal motif. Mutational analyses reveal essential residues within the motif allowing us to define a new type of PDZ domain interaction.
    PDZ domain
    Abstract The postsynaptic density protein‐95/disks large/zonula occludens‐1 (PDZ) protein domain family is one of the most common protein–protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context. © 2012 International Union of Biochemistry and Molecular Biology, Inc.
    PDZ domain
    Postsynaptic density
    Citations (70)
    Ever since Ranganathan and coworkers subjected the covariation of amino acid residues in the postsynaptic density-95/Discs large/Zonula occludens 1 (PDZ) domain family to a statistical correlation analysis, PDZ domains have represented a paradigmatic family to explore single domain protein allostery. Nevertheless, several theoretical and experimental studies in the past two decades have contributed contradicting results with regard to structural localization of the allosteric networks, or even questioned their actual existence in PDZ domains. In this review, we first describe theoretical and experimental approaches that were used to probe the energetic network(s) in PDZ domains. We then compare the proposed networks for two well-studied PDZ domains namely the third PDZ domain from PSD-95 and the second PDZ domain from PTP-BL. Our analysis highlights the contradiction between the different methods and calls for additional work to better understand these allosteric phenomena.
    PDZ domain
    Postsynaptic density
    Citations (30)
    In order to identify proteins that bind to the PDZ domain of Erbin, we tested the C-termini of several proteins in a yeast two-hybrid assay. ErbB2, APC, β-catenin, c-Rel and HTLV-1 Tax were identified as ligands of the PDZ domain of Erbin. The interactions were verified by co-immunoprecipitation experiments. These findings demonstrate the promiscuity of the PDZ domain of Erbin. Keywords: Erbin, PDZ domain, ErbB2, APC, c-Rel, HTLV-1 Tax
    PDZ domain
    Immunoprecipitation
    Two-hybrid screening
    Citations (19)