Epigenetic and replacement roles of histone variant H3.3 in reproduction and development
51
Citation
121
Reference
10
Related Paper
Citation Trend
Abstract:
The nucleosomal organization of eukaryotic chromatin is generally established during DNA replication by the deposition of canonical histones synthesized in S phase.However, cells also use a Replication Independent (RI) nucleosome assembly pathway that allows the incorporation of non-canonical histone variants in the chromatin.H3.3 is a conserved histone variant that is structurally very close to its canonical counterpart but nevertheless possesses specific properties.In this review, we discuss the dual role of H3.3 which functions as a neutral replacement histone, but also participates in the epigenetic transmission of active chromatin states.These properties of H3.3 are also explored in the light of recent studies that implicate this histone and its associated chromatin assembly factors in large scale, replication-independent chromatin remodeling events.In particular, H3.3 appears as a critical player in the transmission of the paternal genome, from sperm to zygote.Keywords:
Histone code
Histone Methylation
Replication timing
Cse4p is a structural component of the core centromere of Saccharomyces cerevisiae and is a member of the conserved CENP-A family of specialized histone H3 variants. The histone H4 allele hhf1-20 confers defects in core centromere chromatin structure and mitotic chromosome transmission. We have proposed that Cse4p and histone H4 interact through their respective histone fold domains to assemble a nucleosome-like structure at centromeric DNA. To test this model, we targeted random mutations to the Cse4p histone fold domain and isolated three temperature-sensitive cse4 alleles in an unbiased genetic screen. Two of the cse4 alleles contain mutations at the Cse4p-H4 interface. One of these requires two widely separated mutations demonstrating long-range cooperative interactions in the structure. The third cse4 allele is mutated at its helix 2-helix 3 interface, a region required for homotypic H3 fold dimerization. Overexpression of wild-type Cse4p and histone H4 confer reciprocal allele-specific suppression of cse4 and hhf1 mutations, providing strong evidence for Cse4p-H4 protein interaction. Overexpression of histone H3 is dosage lethal in cse4 mutants, suggesting that histone H3 competes with Cse4p for histone H4 binding. However, the relative resistance of the Cse4p-H4 pathway to H3 interference argues that centromere chromatin assembly must be highly regulated.
Histone code
Cite
Citations (61)
Replication-dependent histones are expressed in a cell cycle regulated manner and supply the histones necessary to support DNA replication. In mammals, the replication-dependent histones are encoded by a family of genes that are located in several clusters. In humans, these include 16 genes for histone H2A, 22 genes for histone H2B, 14 genes for histone H3, 14 genes for histone H4 and 6 genes for histone H1. While the proteins encoded by these genes are highly similar, they are not identical. For many years, these genes were thought to encode functionally equivalent histone proteins. However, several lines of evidence have emerged that suggest that the replication-dependent histone genes can have specific functions and may constitute a novel layer of chromatin regulation. This Survey and Summary reviews the literature on replication-dependent histone isoforms and discusses potential mechanisms by which the small variations in primary sequence between the isoforms can alter chromatin function. In addition, we summarize the wealth of data implicating altered regulation of histone isoform expression in cancer.
Histone code
Histone Methylation
Replication timing
Histone octamer
Cite
Citations (59)
Histone octamer
Histone code
Histone Methylation
Histone-modifying enzymes
Epigenomics
Cite
Citations (146)
Histone H4
Histone code
Cite
Citations (79)
Histone H1.0 belongs to the class of linker histones (H1), although it is substantially distinct from other histone H1 family members. The differences can be observed in the chromosomal location and organization of the histone H1.0 encoding gene, as well as in the length and composition of its amino acid chain. Whereas somatic (H1.1–H1.5) histone H1 variants are synthesized in the cell cycle S-phase, histone H1.0 is synthesized throughout the cell cycle. By replacing somatic H1 variants during cell maturation, histone H1.0 is gradually deposited in low dividing cells and achieves the highest level of expression in the terminally differentiated cells. Compared to other differentiation-specific H1 histone (H5) characteristic for unique tissue and organisms, the distribution of histone H1.0 remains non-specific. Classic investigations emphasize that histone H1.0 is engaged in the organization of nuclear chromatin accounting for formation and maintenance of its nucleosomal and higher-order structure, and thus influences gene expression. However, the recent data confirmed histone H1.0 peculiar localization in the nucleolus and unexpectedly revealed its potential for regulation of nucleolar, RNA-dependent, activity via interaction with other proteins. According to such findings, histone H1.0 participates in the formation of gene-coded information through its control at both transcriptional and translational levels. In order to reappraise the biological significance of histone H1.0, both aspects of its activity are presented in this review.
Histone code
SAP30
Histone Methylation
Histone octamer
Histone H4
Cite
Citations (10)
Histone modifications regulate transcription by RNA polymerase II and maintain a balance between active and repressed chromatin states. The conserved Paf1 complex (Paf1C) promotes specific histone modifications during transcription elongation, but the mechanisms by which it facilitates these marks are undefined. We previously identified a 90-amino acid region within the Rtf1 subunit of Paf1C that is necessary for Paf1C-dependent histone modifications in Saccharomyces cerevisiae . Here we show that this histone modification domain (HMD), when expressed as the only source of Rtf1, can promote H3 K4 and K79 methylation and H2B K123 ubiquitylation in yeast. The HMD can restore histone modifications in rtf1Δ cells whether or not it is directed to DNA by a fusion to a DNA binding domain. The HMD can facilitate histone modifications independently of other Paf1C subunits and does not bypass the requirement for Rad6–Bre1. The isolated HMD localizes to chromatin, and this interaction requires residues important for histone modification. When expressed outside the context of full-length Rtf1, the HMD associates with and causes Paf1C-dependent histone modifications to appear at transcriptionally inactive loci, suggesting that its function has become deregulated. Finally, the Rtf1 HMDs from other species can function in yeast. Our findings suggest a direct and conserved role for Paf1C in coupling histone modifications to transcription elongation.
Histone code
Histone H2B
Histone Methylation
Histone octamer
RNA polymerase II
Cite
Citations (75)
In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.
Histone code
SAP30
Histone Methylation
Histone octamer
Histone deacetylase 2
HDAC4
Cite
Citations (24)
Histone octamer
Histone code
Histone Methylation
Histone-modifying enzymes
Cite
Citations (54)
Histone H2B
Histone Methylation
Histone code
Histone octamer
Histone deacetylase 5
SAP30
Cite
Citations (90)
Abstract We discuss the regulation of the histone genes of the budding yeast Saccharomyces cerevisiae. These include genes encoding the major core histones (H3, H4, H2A, and H2B), histone H1 (HHO1), H2AZ (HTZ1), and centromeric H3 (CSE4). Histone production is regulated during the cell cycle because the cell must replicate both its DNA during S phase and its chromatin. Consequently, the histone genes are activated in late G1 to provide sufficient core histones to assemble the replicated genome into chromatin. The major core histone genes are subject to both positive and negative regulation. The primary control system is positive, mediated by the histone gene-specific transcription activator, Spt10, through the histone upstream activating sequences (UAS) elements, with help from the major G1/S-phase activators, SBF (Swi4 cell cycle box binding factor) and perhaps MBF (MluI cell cycle box binding factor). Spt10 binds specifically to the histone UAS elements and contains a putative histone acetyltransferase domain. The negative system involves negative regulatory elements in the histone promoters, the RSC chromatin-remodeling complex, various histone chaperones [the histone regulatory (HIR) complex, Asf1, and Rtt106], and putative sequence-specific factors. The SWI/SNF chromatin-remodeling complex links the positive and negative systems. We propose that the negative system is a damping system that modulates the amount of transcription activated by Spt10 and SBF. We hypothesize that the negative system mediates negative feedback on the histone genes by histone proteins through the level of saturation of histone chaperones with histone. Thus, the negative system could communicate the degree of nucleosome assembly during DNA replication and the need to shut down the activating system under replication-stress conditions. We also discuss post-transcriptional regulation and dosage compensation of the histone genes.
Budding yeast
Cite
Citations (96)