logo
    Activities of pyruvate dehydrogenase, enzymes of citric acid cycle, and aminotransferases in the subcellular fractions of cerebral cortex in normal and hyperammonemic rats
    54
    Citation
    24
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    Malate dehydrogenase
    Isocitrate dehydrogenase
    Oxoglutarate dehydrogenase complex
    Alanine
    Oxidative decarboxylation of pyruvate by branched-chain 2-oxo acid dehydrogenase can result in overestimation of the expressed and total activity of hepatic pyruvate dehydrogenase. Pyruvate is a poor substrate for branched-chain 2-oxo acid dehydrogenase relative to the branched-chain oxo acids; however, the comparable total activities of the two complexes in liver, the much greater activity state of branched-chain 2-oxo acid dehydrogenase compared with pyruvate dehydrogenase in most physiological states, and the use of high pyruvate concentrations, explain the interference that can occur in conventional radiochemical or indicator-enzyme linked assays of pyruvate dehydrogenase. Goat antibody that specifically inhibited branched-chain 2-oxo acid dehydrogenase was used in this study to provide a more specific assay for pyruvate dehydrogenase.
    Dihydrolipoyl transacetylase
    Oxoglutarate dehydrogenase complex
    Oxidative decarboxylation
    Citations (10)
    A comparative study of the pyruvate dehydrogenase complex and its pyruvate dehydrogenase component was carried out by using the circular dichroism method. It was found that the spectral properties of the pyruvate dehydrogenase complex are determined by those of its first component: i) the spectrum of the thiamine pyrophosphate-free pyruvate dehydrogenase complex displayed the main characteristics of the pyruvate dehydrogenase component; ii) the appearance of the charge transfer complex band during thiamine pyrophosphate saturation was revealed for the both proteins; iii) in both cases the charge transfer complex band disappeared after the interaction of the holoform with pyruvate and reappeared after the addition of dithiothreitol used as a deacetylating reagent. Coenzyme A in the same reaction selectively deacetylated the pyruvate dehydrogenase complex (but not its pyruvate dehydrogenase component). The spectral dynamics of pyruvate dehydrogenase reflects the functional changes in the enzyme active centers during the catalytic act. The similarity of the spectral behaviour of pyruvate dehydrogenase within the complex structure and in the isolated state provides support for the earlier proposed mechanism of the pyruvate dehydrogenase action and ensures a methodological basis for its direct investigation within the complex structure.
    Dihydrolipoyl transacetylase
    Oxoglutarate dehydrogenase complex
    Citations (0)
    The structure and functional properties of pyruvate dehydrogenase complex (PDHC) have been reviewed briefly.PDHC is a mitochondrial multienzyme complex including pyruvate dehydrogenase(E_1),dihydrolipoamide acetyltransferase(E_2),dihydrolipoamide dehydrogenase(E_3),pyruvate dehydrogenase,pyruvate dehydrogenase phosphatase,five cofactor and protein X.Pyruvate dehydrogenase complex converts pyruvate to aceryl-CoA that is subatrate for the citric acid cycle.Lactic acidosis can arise from the deficiency of PDHC.
    Oxoglutarate dehydrogenase complex
    Dihydrolipoyl transacetylase
    Dihydrolipoamide dehydrogenase
    Citations (1)
    A comparative study of the pyruvate dehydrogenase complex and its pyruvate dehydrogenase component was carried out by using the circular dichroism method. It was found that the spectral properties of the pyruvate dehydrogenase complex are determined by those of its first component: i) the spectrum of the thiamine pyrophosphate-free pyruvate dehydrogenase complex displayed the main characteristics of the pyruvate dehydrogenase component; ii) the appearance of the charge transfer complex band during thiamine pyrophosphate saturation was revealed for the both proteins; iii) in both cases the charge transfer complex band disappeared after the interaction of the holoform with pyruvate and reappeared after the addition of dithiothreitol used as a deacetylating reagent. Coenzyme A in the same reaction selectively deacetylated the pyruvate dehydrogenase complex (but not its pyruvate dehydrogenase component). The spectral dynamics of pyruvate dehydrogenase reflects the functional changes in the enzyme active centers during the catalytic act. The similarity of the spectral behaviour of pyruvate dehydrogenase within the complex structure and in the isolated state provides support for the earlier proposed mechanism of the pyruvate dehydrogenase action and ensures a methodological basis for its direct investigation within the complex structure.
    Dihydrolipoyl transacetylase
    Oxoglutarate dehydrogenase complex
    Citations (0)
    The pigeon breast muscle pyruvate dehydrogenase complex was resolved into three component enzymes: lipoate acetyltransferase, pyruvate dehydrogenase, and lipoamide dehydrogenase. The antibodies against each component enzyme were prepared. All of the antibodies against component enzymes precipitated the pyruvate dehydrogenase complex. The enzyme complex was recovered as the immunoprecipitate from the extract of breast muscle of a pigeon that had received a single injection of L-[4,5-3H]leucine. The immunoprecipitate was separated into each component enzyme by SDS-polyacrylamide gel electrophoresis. The relative isotopic leucine incorporations per mg of protein into each component enzyme 4 h after the injection were 1.0 : 0.9 : 1.4 : 2.7 for lipoate acetyltransferase, alpha- and beta-subunit of pyruvate dehydrogenase, and lipoamide dehydrogenase, respectively. The half-lives of lipoate acetyltransferase, alpha- and beta-subunit of pyruvate dehydrogenase, and lipoamide dehydrogenase were 7.7, 2.5, 2.6, and 1.8 days, respectively. These results indicate that the component enzymes of the pyruvate dehydrogenase complex were synthesized and degraded at different rates.
    Dihydrolipoyl transacetylase
    Oxoglutarate dehydrogenase complex
    Dihydrolipoamide dehydrogenase
    The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.
    Dihydrolipoyl transacetylase
    Oxoglutarate dehydrogenase complex
    Oxidative decarboxylation
    Dihydrolipoamide dehydrogenase
    Citations (68)
    Dihydrolipoyl transacetylase
    Oxoglutarate dehydrogenase complex
    Dihydrolipoamide dehydrogenase
    Flavoprotein
    Citations (278)