The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone
21
Citation
72
Reference
10
Related Paper
Citation Trend
Keywords:
TFAM
Bioenergetics
Organelle biogenesis
NRF1
Hexavalent chromium (Cr(VI)) is a ubiquitous environmental pollutant, which poses a threat to human public health. Recent studies have shown that mitochondrial biogenesis can be activated by inflammatory and oxidative stress. However, whether mitochondrial biogenesis is involved in Cr(VI)-induced hepatotoxicity is unclear. Here, we demonstrated the induction of inflammatory response and oxidative stress, as indicated by upregulation of inflammatory factors and reactive oxygen species (ROS). Subsequently, we demonstrated that mitochondrial biogenesis, comprising the mitochondrial DNA copy number and mitochondrial mass, was significantly increased in HepG2 cells exposed to low concentrations of Cr(VI). Expression of genes related to mitochondrial function complex I and complex V was upregulated at low concentrations of Cr(VI). mRNA levels of antioxidant enzymes, including superoxide dismutase 1 and 2 (SOD1 and SOD2, respectively), kech like ECH associate protein 1 (KEAP1) and nuclear respiratory factor 2 (NRF-2), were also upregulated. Consistent with the above results, mRNA and protein levels of key transcriptional regulators of mitochondrial biogenesis such as the peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α), NRF-1 and mitochondrial transcription factor A (TFAM) were increased by low concentrations of Cr(VI) in HepG2 cells. Moreover, we found that PGC-1α and NRF-1 tended to translocate into the nucleus. The expression of genes potentially involved in mitochondrial biogenesis pathways, including mRNA level of silent information regulator-1 (SIRT1), forkhead box class-O (FOXO1), threonine kinase 1 (AKT1), and cAMP response element-binding protein (CREB1), was also upregulated. In contrast, mitochondrial biogenesis was inhibited and the expression of its regulatory factors and antioxidants was downregulated at high and cytotoxic concentrations of Cr(VI) in HepG2 cells. It is believed that pretreatment with α-tocopherol could be acting against the mitochondrial biogenesis imbalance induced by Cr(VI). In conclusion, our study suggests that the homeostasis of mitochondrial biogenesis may be an important cellular compensatory mechanism against Cr(VI)-induced toxicity and a promising detoxification target.
TFAM
NRF1
SOD2
Organelle biogenesis
Cite
Citations (40)
TFAM
NRF1
Organelle biogenesis
Cite
Citations (227)
Siegesbeckia orientalis has been reported to exhibit anti-allergic, anti-infertility, anti-inflammatory, anti-rheumatic, and immunosuppressive activities. However, there are very few studies describing its stimulatory effects on exercise capacity. This study elucidated whether S. orientalis extract (SOE) standardized to kirenol content can enhance exercise endurance by increasing mitochondrial biogenesis. SOE significantly improved the running distance and time in mice fed normal diet (ND) and high-fat diet (HFD). SOE also enhanced mitochondrial biogenesis by stimulating the mitochondrial regulatory genes including peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription factor A (TFAM) in the skeletal muscles of ND and HFD mice. Furthermore, SOE upregulated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/PGC-1α/peroxisome proliferator-activated receptor delta (PPARδ) signaling pathway in the skeletal muscles of ND and HFD mice. Kirenol markedly increased adenosine triphosphate production and mitochondrial activity by stimulating the expression of markers of mitochondrial biogenesis and upregulating the AMPK/SIRT1/PGC-1α/PPARδ signaling pathway in L6 myotubes. These results show that SOE has the potential to be used to develop an exercise supplement capable of stimulating mitochondrial biogenesis through the AMPK/SIRT1/PGC-1α/PPARδ signaling pathway.
TFAM
NRF1
Sirtuin 1
Organelle biogenesis
PPARGC1A
Cite
Citations (5)
TFAM
NRF1
PPARGC1A
Organelle biogenesis
Cite
Citations (13)
Exercise enhances mitochondrial biogenesis in skeletal muscle. Increased mitochondrial function and content can contribute to the improvement in skeletal muscle function and the benefits of exercise by increasing the response to energy demands. The effect of standardized Kaempferia parviflora extract (KPE) on exercise performance was accessed in L6 myotubes and C57BL/6J mice. KPE significantly activated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and increased mitochondrial density in L6 myotubes. KPE also upregulated the expression of transcription factors for mitochondrial biogenesis (estrogen-related receptor-α [ERRα], nuclear respiratory factor-1 [NRF-1], and mitochondrial transcription factor A [Tfam]) through activation of PGC-1α in L6 myotubes. In vivo models including normal diet mice and high-fat diet obese mice showed that KPE effectively enhanced running endurance and increased the skeletal muscle weight/body weight ratio. Furthermore, these observations were associated with a significant upregulation of mitochondrial biogenesis regulatory genes in skeletal muscle tissue. KPE enhanced the protein expression of the sirtuin 1 (SIRT1)/adenosine monophosphate (AMP)-activated protein kinase (AMPK)/PGC-1α/peroxisome proliferator-activated receptor-δ (PPARδ) signaling pathway components in vitro and in vivo, acting as an exercise metabolism regulator. These results suggest that KPE has the potential to enhance exercise performance through mitochondrial biogenesis and the SIRT1/AMPK/PGC-1α/PPARδ signaling pathways.
TFAM
NRF1
Sirtuin 1
Organelle biogenesis
PPARGC1A
AMP-Activated Protein Kinase
Cite
Citations (17)
TFAM
NRF1
DNAJA3
Resistin
Organelle biogenesis
PPARGC1A
Cite
Citations (28)
The worldwide prevalence of metabolic diseases, including obesity and diabetes, is increasing. Mitochondrial dysfunction is recognized as a core feature of these diseases. Emerging evidence also suggests that defects in mitochondrial biogenesis, number, morphology, fusion, and fission, contribute to the development and progression of metabolic diseases. Our previous studies revealed that balanced deep-sea water (BDSW) has potential as a treatment for diabetes and obesity. In this study, we aimed to investigate the mechanism by which BDSW regulates diabetes and obesity by studying its effects on mitochondrial metabolism. To determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, and the expression of transcription factors and mitochondria specific genes, as well as on the phosphorylation of signaling molecules associated with mitochondria biogenesis and its function in C2C12 myotubes. BDSW increased mitochondrial biogenesis in a time and dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances gene expression of PGC-1α, NRF1, and TFAM for mitochondrial transcription; MFN1/2 and DRP1 for mitochondrial fusion; OPA1 for mitochondrial fission; TOMM40 and TIMM44 for mitochondrial protein import; CPT-1α and MCAD for fatty acid oxidation; CYTC for oxidative phosphorylation. Upregulation of these genes was validated by increased mitochondria staining, CS activity, CytC oxidase activity, NAD+ to NADH ratio, and the phosphorylation of signaling molecules such as AMPK and SIRT1. Moreover, drinking BDSW remarkably improved mtDNA content in the muscles of HFD-induced obese mice. Taken together, these results suggest that the stimulatory effect of BDSW on mitochondrial biogenesis and function may provide further insights into the regulatory mechanism of BDSW-induced anti-diabetic and anti-obesity action.
TFAM
NRF1
DNAJA3
MFN2
FIS1
Organelle biogenesis
PPARGC1A
MFN1
Cite
Citations (18)
Mitochondrial dysfunction is associated with insulin resistance and type 2 diabetes (T2DM). Decreased mitochondrial abundance and function were found in white adipose tissue (WAT) of T2DM patients. Therefore, promoting WAT mitochondrial biogenesis and improving adipocyte metabolism may be strategies to prevent and reverse T2DM. Salvianolic acid A (SAA) has been found to exert anti-diabetic and lipid disorder-improving effects. However whether SAA benefits mitochondrial biogenesis and function in adipose tissue is unclear. Here, we evaluated SAA's effect on mitochondrial biogenesis and function in 3T3-L1 adipocytes and investigated its potential regulatory mechanism. Results showed that SAA treatment significantly promoted the transcription and expression of peroxisome proliferator-activated receptor γ coactivator- 1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM). Meanwhile, SAA treatment significantly promoted mitochondrial biogenesis by increasing mitochondrial DNA (mtDNA) quantity, mitochondrial mass, and expression of mitochondrial respiratory chain enzyme complexes III and complex IV. These enhancements were accompanied by enhanced phosphorylation of AMPK and ACC and were suppressed by Compound C, a specific AMPK inhibitor. Furthermore, SAA treatment improved adipocytes mitochondrial respiration and stimulated ATP generation. These findings indicate that SAA exerts a potential therapeutic capacity against adipocytes mitochondrial dysfunction in diabetes by activating the AMPK-PGC-1α pathway.
Organelle biogenesis
3T3-L1
Signalling
Cite
Citations (11)
TFAM
NRF1
Organelle biogenesis
AMP-Activated Protein Kinase
Cite
Citations (28)
Electroacupuncture (EA) pretreatment induces cerebral ischemic tolerance; however, the mechanism remains poorly understood. This study aimed to determine the participation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis in the neuroprotection of EA and whether cannabinoid receptor 1 (CB1R) is involved in this mechanism. At 2 hours after EA pretreatment, adult male C57BL/6j mice were subjected to 60-minute right middle cerebral artery occlusion (MCAO). Mitochondrial function, the level of mitochondrial biogenesis-related proteins (nuclear transcription factor 1, NRF1; mitochondrial transcription factor A, TFAM), and mitochondrial DNA (mtDNA) were measured. A small interfering RNA (siRNA) targeting PGC-1α and the CB1R antagonists AM251 and SR141716A were given to the animals before EA pretreatment, and mitochondrial function and biogenesis were examined after MCAO. EA ameliorated the mitochondrial function, upregulated the NRF1 and TFAM expression, and increased the mtDNA levels and the volume and number of mitochondria. EA pretreatment increased the expression of PGC-1α, whereas the PGC-1α siRNA and CB1R antagonists reversed the improved neuroprotection and increased mitochondrial biogenesis induced by EA. Our results indicated that EA pretreatment protects the mitochondria and promotes mitochondrial biogenesis by activating CB1R-dependent PGC-1α, which provides a novel mechanism for EA pretreatment-induced ischemic tolerance.
TFAM
NRF1
PPARGC1A
Organelle biogenesis
Cite
Citations (8)