A Role for the Ancient SNARE Syntaxin 17 in Regulating Mitochondrial Division
Kohei ArasakiHiroaki ShimizuHirofumi MogariNaoki NishidaNaohiko HirotaAkiko FurunoYoshihisa KudoMisuzu BabaNorio BabaJinglei ChengToyoshi FujimotoNaotada IshiharaCarolina G. Ortiz-SandovalLael D. BarlowArun RaturiNaoshi DohmaeYuichi WakanaHiroki InoueKatsuko TaniJoel B. DacksThomas SimmenMitsuo Tagaya
148
Citation
42
Reference
10
Related Paper
Citation Trend
Keywords:
SNARE complex
SNARE complex
Vesicular Transport Proteins
Syntaxin 3
Cite
Citations (288)
ABSTRACT Fusion of intracellular trafficking vesicles is mediated by the assembly of soluble N -ethylmaleimide-sensitive fusion protein receptors (SNAREs) to form membrane-bridging complexes. Also required for SNARE-mediated membrane fusion are Sec1/Munc18-family (SM) proteins, SNARE chaperones that can function as templates to catalyze SNARE complex assembly. In the paradigmatic structure of an SM–SNARE complex, Munc18-1 bound to the Qa-SNARE syntaxin 1, the SNARE protein is trapped in an autoinhibited closed conformation that prevents it from entering into SNARE complexes. Here, we present the structure of a second SM–Qa-SNARE complex, Vps45–Tlg2. Strikingly, Vps45 holds Tlg2 in an open conformation, with its SNARE motif disengaged from its three-helical Habc domain and its linker region unfolded. The domain 3a helical hairpin of Vps45 is unfurled, exposing the presumptive R-SNARE binding site to allow template complex formation. Tlg2 has a pronounced tendency to self-associate via its SNARE motif, and we demonstrate that Vps45 can rescue Tlg2 oligomers into stoichiometric Vps45–Tlg2 complexes. Our findings demonstrate that SM proteins can engage Qa-SNAREs using at least two different modes, one in which the SNARE is closed and one in which it is open.
SNARE complex
Linker
Tethering
Cite
Citations (0)
SNARE complex
Synaptobrevin
Cite
Citations (57)
Munc13-1 is crucial for neurotransmitter release and, together with Munc18-1, orchestrates assembly of the neuronal SNARE complex formed by syntaxin-1, SNAP-25, and synaptobrevin. Assembly starts with syntaxin-1 folded into a self-inhibited closed conformation that binds to Munc18-1. Munc13-1 is believed to catalyze the opening of syntaxin-1 to facilitate SNARE complex formation. However, different types of Munc13-1-syntaxin-1 interactions have been reported to underlie this activity, and the critical nature of Munc13-1 for release may arise because of its key role in bridging the vesicle and plasma membranes. To shed light into the mechanism of action of Munc13-1, we have used NMR spectroscopy, SNARE complex assembly experiments, and liposome fusion assays. We show that point mutations in a linker region of syntaxin-1 that forms intrinsic part of the closed conformation strongly impair stimulation of SNARE complex assembly and liposome fusion mediated by Munc13-1 fragments, even though binding of this linker region to Munc13-1 is barely detectable. Conversely, the syntaxin-1 SNARE motif clearly binds to Munc13-1, but a mutation that disrupts this interaction does not affect SNARE complex assembly or liposome fusion. We also show that Munc13-1 cannot be replaced by an artificial tethering factor to mediate liposome fusion. Overall, these results emphasize how very weak interactions can play fundamental roles in promoting conformational transitions and strongly support a model whereby the critical nature of Munc13-1 for neurotransmitter release arises not only from its ability to bridge two membranes but also from an active role in opening syntaxin-1 via interactions with the linker.
SNARE complex
Synaptobrevin
Vesicle fusion
Linker
Cite
Citations (26)
Soluble N- ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are required for intracellular membrane fusion, and are differentially localized throughout the cell. SNAREs on vesicle and target membranes contain “SNARE motifs” which interact to form a four-helix bundle that contributes to the fusion of two membranes. SNARE motif sequences fall into four classes, homologous to the neuronal proteins syntaxin 1a, VAMP 2, and the N- and C-terminal SNARE motifs of SNAP-25 (S25N and S25C), and it is thought that one member from each class interacts to form a SNARE complex. Many SNAREs also feature N-terminal domains believed to function in regulating SNARE complex assembly or other aspects of vesicle transport. Syntaxin 6 is a SNARE found primarily in endosomal transport vesicles and whose SNARE motif shows significant homology to both syntaxin 1a and S25C. The crystal structure of the syntaxin 6 N-terminal domain reveals strong structural similarity with the N-terminal domains of syntaxin family members syntaxin 1a, Sso1p, and Vam3p, despite a very low level of sequence similarity. The syntaxin 6 SNARE motif can substitute for S25C in in vitro binding experiments, supporting the classification of syntaxin 6 as an S25C family member. Secondary structure prediction of SNARE proteins shows that the N-terminal domains of many syntaxin, S25N, and S25C family members are likely to be similar to one another, but are distinct from those of VAMP family members, indicating that syntaxin, S25N, and S25C SNAREs may have shared a common ancestor.
SNARE complex
Syntaxin 3
STX1A
Munc-18
SNAP23
Cite
Citations (51)
Fusion of intracellular trafficking vesicles is mediated by the assembly of SNARE proteins into membrane-bridging complexes. SNARE-mediated membrane fusion requires Sec1/Munc18-family (SM) proteins, SNARE chaperones that can function as templates to catalyze SNARE complex assembly. Paradoxically, the SM protein Munc18-1 traps the Qa-SNARE protein syntaxin-1 in an autoinhibited closed conformation. Here we present the structure of a second SM–Qa-SNARE complex, Vps45–Tlg2. Strikingly, Vps45 holds Tlg2 in an open conformation, with its SNARE motif disengaged from its Habc domain and its linker region unfolded. The domain 3a helical hairpin of Vps45 is unfurled, exposing the presumptive R-SNARE binding site to allow template complex formation. Although Tlg2 has a pronounced tendency to form homo-tetramers, Vps45 can rescue Tlg2 tetramers into stoichiometric Vps45–Tlg2 complexes. Our findings demonstrate that SM proteins can engage Qa-SNAREs using at least two different modes, one in which the SNARE is closed and one in which it is open.
SNARE complex
Linker
Vesicular Transport Proteins
Cite
Citations (28)
Dnm1p belongs to a family of dynamin-related GTPases required to remodel different cellular membranes. In budding yeast, Dnm1p-containing complexes assemble on the cytoplasmic surface of the outer mitochondrial membrane at sites where mitochondrial tubules divide. Our previous genetic studies suggested that Dnm1p's GTPase activity was required for mitochondrial fission and that Dnm1p interacted with itself. In this study, we show that bacterially expressed Dnm1p can bind and hydrolyze GTP in vitro. Coimmunoprecipitation studies and yeast two-hybrid analysis suggest that Dnm1p oligomerizes in vivo. With the use of the yeast two-hybrid system, we show that this Dnm1p oligomerization is mediated, in part, by a C-terminal sequence related to the GTPase effector domain (GED) in dynamin. The Dnm1p interactions characterized here are similar to those reported for dynamin and dynamin-related proteins that form higher order structures in vivo, suggesting that Dnm1p assembles to form rings or collars that surround mitochondrial tubules. Based on previous findings, a K705A mutation in the Dnm1p GED is predicted to interfere with GTP hydrolysis, stabilize active Dnm1p-GTP, and stimulate a rate-limiting step in fission. Here we show that expression of the Dnm1 K705A protein in yeast enhances mitochondrial fission. Our results provide evidence that the GED region of a dynamin-related protein modulates a rate-limiting step in membrane fission.
Cite
Citations (95)
The syntaxin family of soluble N-ethyl maleimide sensitive factor adaptor protein receptors (SNAREs) is known to play an important role in the fusion of transport vesicles with specific organelles. Twenty-four syntaxins are encoded in the genome of the model plant Arabidopsis thaliana. These 24 genes are found in 10 gene families and have been reclassified as syntaxins of plants (SYPs). Some of these gene families have been previously characterized, with the SYP2-type syntaxins being found in the prevacuolar compartment (PVC) and the SYP4-type syntaxins on thetrans-Golgi network (TGN). Here we report on two previously uncharacterized syntaxin groups. The SYP5 group is encoded by a two-member gene family, whereas SYP61 is a single gene. Both types of syntaxins are localized to multiple compartments of the endomembrane system, including the TGN and the PVC. These two groups of syntaxins form SNARE complexes with each other, and with other Arabidopsis SNAREs. On the TGN, SYP61 forms complexes with the SNARE VTI12 and either SYP41 or SYP42. SYP51 and SYP61 interact with each other and with VTI12, most likely also on the TGN. On the PVC, a SYP5-type syntaxin interacts specifically with a SYP2-type syntaxin, as well as the SNARE VTI11, forming a SNARE complex likely involved in TGN-to-PVC trafficking.
Syntaxin 3
SNARE complex
Endomembrane system
Cite
Citations (259)
Previously, we have demonstrated physical and functional interactions of the voltage-gated potassium channel Kv2.1 with the plasma membrane protein components of the exocytotic SNARE complex, syntaxin 1A, and the t-SNARE, syntaxin 1A/SNAP-25, complex. Importantly, the physical interaction of Kv2.1 with syntaxin was shown to be involved in the facilitation of secretion from PC12 cells, which was independent of potassium currents. Recently, we showed that also VAMP2, the vesicular SNARE, interacts physically and functionally with Kv2.1. Here, we first set out to test the interaction of the full SNARE, syntaxin/SNAP-25/VAMP2, complex with the channel. Using the interaction of VAMP2 with Kv2.1 in Xenopus oocytes as a probe, we showed that coexpression of the t-SNARE complex with VAMP2 abolished the VAMP2 effect on channel inactivation and reduced the amount of VAMP2 that coprecipitated with Kv2.1. Further, in vitro pull down assays showed that the full SNARE complex failed to interact with Kv2.1 N- and C-termini in tandem, in contrast to the individual SNARE components. This suggests that the interactions of the SNARE components with Kv2.1 are abolished upon their recruitment into a full SNARE complex, which does not interact with the channel. Other important findings arising from the in vitro study are that the t-SNARE complex, in addition to syntaxin, interacts with a specific C-terminal channel domain, C1a, shown to mediate the facilitation of release by Kv2.1 and that the presence of Kv2.1 N-terminus has crucial contribution to these interactions. These findings provide important insights into the understanding of the complex molecular events involved in the novel phenomenon of secretion facilitation in neuroendocrine cells by Kv2.1.
SNARE complex
Munc-18
Syntaxin 3
STX1A
Cite
Citations (20)
Munc18-1 forms a template to organize assembly of the neuronal SNARE complex that triggers neurotransmitter release, binding first to a closed conformation of syntaxin-1 where its amino-terminal region interacts with the SNARE motif, and later binding to synaptobrevin. However, the mechanism of SNARE complex assembly remains unclear. Here, we report two cryo-EM structures of Munc18-1 bound to cross-linked syntaxin-1 and synaptobrevin. The structures allow visualization of how syntaxin-1 opens and reveal how part of the syntaxin-1 amino-terminal region can help nucleate interactions between the amino termini of the syntaxin-1 and synaptobrevin SNARE motifs, while their carboxyl termini bind to distal sites of Munc18-1. These observations, together with mutagenesis, SNARE complex assembly experiments, and fusion assays with reconstituted proteoliposomes, support a model whereby these interactions are critical to initiate SNARE complex assembly and multiple energy barriers enable diverse mechanisms for exquisite regulation of neurotransmitter release.
Synaptobrevin
SNARE complex
Cite
Citations (69)