Effect of free fatty acids and detergents on H,K-ATPase. The steady-state ATP phosphorylation level and the orientation of the enzyme in membrane preparations
33
Citation
27
Reference
10
Related Paper
Citation Trend
Keywords:
Dephosphorylation
Dephosphorylation
Vanadate
Cite
Citations (44)
Pre-steady-state phosphorylation and dephosphorylation of purified and phospholipid-depleted plasma-membrane Ca2+-ATPase (PMCA) solubilized in the detergent polyoxyethylene 10 lauryl ether were studied at 25°C. The time course of phosphorylation with ATP of the enzyme associated with Ca2+, probably the true phosphorylation reaction, showed a fast phase (kapp near 400s−1) followed by a slow phase (kapp = 23s−1). With asolectin or acidic phosphatidylinositol, the concentration of phosphoenzyme (EP) increased at as high a rate as before, passed through a maximum at 4ms and stabilized at a steady level that was approx. half that without lipids. Calmodulin (CaM) did not change the rate of the fast phase, accelerated the slow phase (kapp = 93s−1) and increased [EP] with small changes in the shape of the time course. Dephosphorylation was slow (kapp = 30s−1) and insensitive to CaM. Asolectin accelerated dephosphorylation, which followed biexponential kinetics with fast (kapp = 220s−1) and slow (kapp = 20s−1) components. CaM stimulated the fast component by nearly 50%. The results show that the behaviour of the PMCA is complex, and suggest that acidic phospholipids and CaM activate PMCA through different mechanisms. Acceleration of dephosphorylation seems relevant during activation of the PMCA by acidic phospholipids.
Dephosphorylation
Cite
Citations (9)
A fungal phytotoxin fusicoccin (FC) causes irreversible opening of stomata by activation of the plasma membrane H+-ATPase in guard cells. However, the mechanism by which FC activates the H+-ATPase is not fully understood with respect to the event of phosphorylation. In this study, we provide quantitative evidence that FC-dependent activation of H+-ATPase requires the phosphorylation of the C-terminus, and that FC maintains the activated state by preventing the dephosphorylation. The plasma membrane H+-ATPase in guard cells was phosphorylated on serine and threonine residues in the C-termini of both VHA1 and VHA2 by FC, and the phosphorylation level paralleled the rates of H+-pumping and ATP hydrolysis. An endogenous 14-3-3 protein was co-precipitated with the H+-ATPase, and the amount of 14-3-3 protein was proportional to the phosphorylation level of H+-ATPase. The recombinant 14-3-3 protein bound to the C-terminus only when it was phosphorylated, even in the presence of FC. The phosphorylated C-terminus was dephosphorylated by alkaline phosphatase, and the dephosphorylation was completely prevented when the C-terminus had been incubated with both FC and 14-3-3 protein. The results suggest that FC activates the H+-ATPase by accumulating the complex of phosphorylated H+-ATPase and 14-3-3 protein through inhibition of the dephosphorylation in guard cells.
Fusicoccin
Dephosphorylation
Cite
Citations (118)
Two proteins of molecular mass 13 kDa, a specific inhibitor of Na+, K+ -ATPase and another of 12 kDa, which can distinguish between Ca2, Mg2+ and Ca2+ -ATPase activities have been obtained from the pooled fractions isolated from rat brain, using Sephadex G-100 chromatography. In order to determine the key step(s), which is affected by the modulators, we have designed an in vitro experiment of phosphorylation and dephosphorylation of these ATPases in the absence and presence of the modulators. The results suggest that the phosphorylation step of Mg2+ -independent Ca2+ -ATPase is inhibited, while in Mg2+ -dependent Ca2 -ATPase, the dephosphorylation step is stimulated by the modulators. The findings support our earlier observation that the modulators are able to distinguish between Mg2+ -independent and dependent Ca2+ -ATPases activities.
Dephosphorylation
Sephadex
Cite
Citations (3)
Cite
Citations (21)
Dephosphorylation
Cite
Citations (13)
Dephosphorylation
Ion pump
Cite
Citations (9)
Dephosphorylation
Cite
Citations (25)
Pre-steady-state phosphorylation and dephosphorylation of purified and phospholipid-depleted plasma-membrane Ca2+-ATPase (PMCA) solubilized in the detergent polyoxyethylene 10 lauryl ether were studied at 25°C. The time course of phosphorylation with ATP of the enzyme associated with Ca2+, probably the true phosphorylation reaction, showed a fast phase (kapp near 400s−1) followed by a slow phase (kapp = 23s−1). With asolectin or acidic phosphatidylinositol, the concentration of phosphoenzyme (EP) increased at as high a rate as before, passed through a maximum at 4ms and stabilized at a steady level that was approx. half that without lipids. Calmodulin (CaM) did not change the rate of the fast phase, accelerated the slow phase (kapp = 93s−1) and increased [EP] with small changes in the shape of the time course. Dephosphorylation was slow (kapp = 30s−1) and insensitive to CaM. Asolectin accelerated dephosphorylation, which followed biexponential kinetics with fast (kapp = 220s−1) and slow (kapp = 20s−1) components. CaM stimulated the fast component by nearly 50%. The results show that the behaviour of the PMCA is complex, and suggest that acidic phospholipids and CaM activate PMCA through different mechanisms. Acceleration of dephosphorylation seems relevant during activation of the PMCA by acidic phospholipids.
Dephosphorylation
Cite
Citations (12)
Oligomycin
Dephosphorylation
H(+)-K(+)-Exchanging ATPase
Cite
Citations (17)