Primary Culture of Hippocampal Neurons from P0 Newborn Rats
61
Citation
0
Reference
10
Related Paper
Citation Trend
Abstract:
The physiological properties of hippocampal neurons are commonly investigated, especially because of the involvement of the hippocampus in learning and memory. Primary hippocampal cell culturing allows neuroscientists to examine the activity and properties of neurons at the individual cell and single synapse level. In this video, we will demonstrate how to isolate and grow primary hippocampal cells from newborn rats. The hippocampus may be isolated from each newborn animal in as short as 2 to 3 minutes, and the cultures can be maintained for up to two weeks. We will also briefly demonstrate how to use these hippocampal neurons for ratiometric calcium imaging. While this protocol describes the process for the hippocampus, with little to no modification, it can be applied to other regions of the brain.Cite
Ojbective To study the difference of Aβ 25-35 on neurons between hippocampus and septum. Mdthods employing the method of primary cell culture, neurons survival and SOD were examined ,and amalysed the expression of apoptosis-related gene bcl-xl by Western blot. Result Aβ 25-35 might reduce the survival of hippocampal and septal neurons, increased both activity of CuZn-SOD and expression of Bcl-xl, but decreased the activity of Mn-SOD of hippocampal neurons, and had on obvious effect on septal neurons. Conclusion Aβ 25-35 had the same effect on survival and CuZn-SOD but Mn-SOD between the hippocampus and septum. The cytoxic mechanisms of Aβ 25-35 on hippocampus and septus might be different.
Cite
Citations (0)
Neocortex
Cite
Citations (3)
In a soil bioassay, adult Deroceras reticulatum (Stylommatophora: Limacidae) and three different weight-classes of young Arion lusitanicus (Stylommatophora: Arionidae) were exposed to a single dosage (170 dauer larvae per g of soil) of the nematode Phasmarhabditis hermaphrodita monoxenically associated with the bacterium Moraxella osloensis. Groups of 10 slugs were continuously exposed to nematodes for 4 days, and then transferred individually to Petri-dishes containing a disc of Chinese cabbage as food. Food consumption—measured by image analysis—and slug mortality were recorded daily for 10 days. Food consumption was inhibited in both slug species tested. D. reticulatum stopped feeding 6 days after the start of nematode treatment, while all A. lusitanicus continued to feed. However, in the three weight-classes of A. lusitanicus (0.15 g, 0.24 g, 0.45 g), food consumption was reduced by at least 50 %. The greatest reduction in feeding, nearly 90 %, was noted in the smallest A. lusitanicus. The nematodes successfully killed D. reticulatum but were less efficient at killing young A. lusitanicus. At the end of the experiment, mortality was highest in D. reticultatum (98 %) and the smallest weight-class of A. lusitanicus (47 %). There was almost no mortality in the largest weight-class of A. lusitanicus treated with nematodes. P. hermaphrodita associated with M. osloensis can thus be considered as a biological control agent for young stages of A. lusitanicus for its effect as a feeding inhibitor, rather than for its ability to kill the slugs.
Slug
Cite
Citations (41)
In response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21 . Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53–p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53.
Cite
Citations (125)
The mammalian hippocampal formation (HF) is organized into domains associated with different functions. These differences are driven in part by the pattern of input along the hippocampal long axis, such as visual input to the septal hippocampus and amygdalar input to the temporal hippocampus. HF is also organized along the transverse axis, with different patterns of neural activity in the hippocampus and the entorhinal cortex. In some birds, a similar organization has been observed along both of these axes. However, it is not known what role inputs play in this organization. We used retrograde tracing to map inputs into HF of a food-caching bird, the black-capped chickadee. We first compared two locations along the transverse axis: the hippocampus and the dorsolateral hippocampal area (DL), which is analogous to the entorhinal cortex. We found that pallial regions predominantly targeted DL, while some subcortical regions like the lateral hypothalamus (LHy) preferentially targeted the hippocampus. We then examined the hippocampal long axis and found that almost all inputs were topographic along this direction. For example, the anterior hippocampus was preferentially innervated by thalamic regions, while the posterior hippocampus received more amygdalar input. Some of the topographies we found bear a resemblance to those described in the mammalian brain, revealing a remarkable anatomical similarity of phylogenetically distant animals. More generally, our work establishes the pattern of inputs to HF in chickadees. Some of these patterns may be unique to chickadees, laying the groundwork for studying the anatomical basis of these birds' exceptional hippocampal memory.
Entorhinal cortex
Cite
Citations (4)
Using quantitative receptor autoradiography, spirodecanone binding was evaluated in the gerbil hippocampus 1 h-1 month after cerebral ischaemia of 10 min. The spirodecanone binding was unaffected in the hippocampus up to 48 h after ischaemia. Thereafter, increased binding was found in the stratum radiatum of hippocampal CA1 sector 7 days and 1 month after ischaemia. Other hippocampal regions showed no significant alterations in the spirodecanone binding. A histological study revealed that the hippocampal CA1 sector was severely damaged 7 days and 1 months after ischaemia. These results demonstrate that spirodecanone binding sites are located on interneurones or glial cells in the hippocampal CA1 sector.
Gerbil
Cerebral ischaemia
Cite
Citations (1)
Holcus lanatus
Cite
Citations (21)
SUMMARY A hitherto unrecorded virus having flexible rod‐shaped particles about 740–760 × 13 nm was isolated from Anthoxanthum odoratwn L. It was transmitted by sap inoculation, but not by several species of insect, seed or soil to 18 species of Gramineae including wheat, oats and barley. In susceptible species the virus normally produced a mosaic mottling of the leaves which was sometimes followed by a necrotic streaking or striping.
Mosaic virus
Cite
Citations (6)
HLA-B-associated transcript 3 (BAT3) was originally identified as one of the genes located within human major histocompatibility complex. It encodes a large proline-rich protein with unknown function. In this study, we found that a fragment of the BAT3 gene product interacts with a candidate tumor suppressor, DAN, in the yeast-based two-hybrid system. We cloned the full-length rat BAT3 cDNA from a fibroblast 3Y1 cDNA library. Our sequence analysis has demonstrated that rat BAT3 cDNA is 3617 nucleotides in length and encodes a full-length BAT3 (1098 amino acids) with an estimated molecular mass of 114,801 daltons, which displays an 87.4% identity with human BAT3. The deletion experiment revealed that the N-terminal region (amino acid residues 1-80) of DAN was required for the interaction with BAT3. Green fluorescent protein-tagged BAT3 was largely localized in the cytoplasm of COS cells. Northern hybridization showed that BAT3 mRNA was expressed in all the adult rat tissues examined but predominantly in testis. In addition, the level of BAT3 mRNA expression was more downregulated in some of the transformed cells, including v-mos- and v-Ha-ras-transformed 3Y1 cells, than in the parental cells.
Cite
Citations (21)
In this study, I investigate the role that hippocampal inhibitory cells (intemeurons) have on the synchronization of oscillations between the two hemispheres of the hippocampus. My study focuses in particular on the ripple oscillations, because this network activity is highly synchronous between left and right hippocampus. My hypothesis is that a subset of hippocampal intemeurons might establish axonal connections from the hippocampal area in which the somata reside towards the contralateral side, hence regulating inter-hippocampal ripple discharges. I address this hypothesis injecting in one side of the hippocampus substance P fragment, a peptide that increases the activity of subsets of inhibitory neurons in rat hippocampus, and the antimalarial Quinine whose roles as gap-junction blocker has been well established by numerous publications. Simultaneous recording from both hippocampi are thus compared to investigate whether ipsilateral injected drugs affect hippocampal ripple activity recorded contralaterally. I found that ripple oscillations are indeed affected by injection of the abovementioned drugs: Quinine increases length and decreases Inter Ripple Interval (I.R.I.) in both injected and contralateral hippocampus; on the other hand, SP decreases the average amplitude of the ripple episode, but increases the duration of the ripple event. Most importantly, many of the perturbations observed were preserved between injected and contralateral hippocampus. Since the drugs I employed affect mainly inhibitory neurons, I propose that long-range projecting inhibitory neurons located in the injected hippocampus are responsible for carrying the drugs' effects to the contralateral hippocampus. In conclusion, my results seem to indicate that long-range projecting intemeurons are involved in transmitting ripple synchronization information across the two hippocampi.
Cite
Citations (0)