logo
    Fifteen Million Years of Evolution in the Oryza Genus Shows Extensive Gene Family Expansion
    49
    Citation
    78
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for the super-families F-box and NB-ARC, and five additional families: the Aspartic proteases, BTB/POZ proteins (BTB), Glutaredoxins, Trypsin α-amylase inhibitor proteins, and Zf-Dof proteins. Their evolutionary dynamic was investigated to understand how and why such important size variations are observed between these closely related species. We show that expansions resulted from both amplification, largely by tandem duplications, and contraction by gene losses. For the F-box and NB-ARC gene families, the genes conserved in all species were under strong purifying selection while expanded orthologous genes were under more relaxed purifying selection. In F-box, NB-ARC, and BTB, the expanded groups were enriched in genes with little evidence of expression, in comparison with conserved groups. We also detected 87 loci under positive selection in the expanded groups. These results show that most of the duplicated copies in the expanded groups evolve neutrally after duplication because of functional redundancy but a fraction of these genes were preserved following neofunctionalization. Hence, the lineage-specific expansions observed between Oryza species were partly driven by directional selection.
    Keywords:
    Neofunctionalization
    Negative selection
    Lineage (genetic)
    Gene duplication is widely regarded as a major mechanism modeling genome evolution and function. However, the mechanisms that drive the evolution of the two, initially redundant, gene copies are still ill defined. Many gene duplicates experience evolutionary rate acceleration, but the relative contribution of positive selection and random drift to the retention and subsequent evolution of gene duplicates, and for how long the molecular clock may be distorted by these processes, remains unclear. Focusing on rodent genes that duplicated before and after the mouse and rat split, we find significantly increased sequence divergence after duplication in only one of the copies, which in nearly all cases corresponds to the novel daughter copy, independent of the mechanism of duplication. We observe that the evolutionary rate of the accelerated copy, measured as the ratio of nonsynonymous to synonymous substitutions, is on average 5-fold higher in the period spanning 4–12 My after the duplication than it was before the duplication. This increase can be explained, at least in part, by the action of positive selection according to the results of the maximum likelihood-based branch-site test. Subsequently, the rate decelerates until purifying selection completely returns to preduplication levels. Reversion to the original rates has already been accomplished 40.5 My after the duplication event, corresponding to a genetic distance of about 0.28 synonymous substitutions per site. Differences in tissue gene expression patterns parallel those of substitution rates, reinforcing the role of neofunctionalization in explaining the evolution of young gene duplicates.
    Neofunctionalization
    Nonsynonymous substitution
    Functional divergence
    Negative selection
    Gene dosage
    Molecular evolution
    Synonymous substitution
    Subfunctionalization
    Concerted evolution
    Citations (134)
    In polyploids, whole genome duplication (WGD) played a significant role in genome expansion, evolution and diversification. Many gene families are expanded following polyploidization, with the duplicated genes functionally diversified by neofunctionalization or subfunctionalization. These mechanisms may support adaptation and have likely contributed plant survival during evolution. Flowering time is an important trait in plants, which affects critical features, such as crop yields. The flowering-time gene family is one of the largest expanded gene families in plants, with its members playing various roles in plant development. Here, we performed genome-wide identification and comparative analysis of flowering-time genes in three palnt families i.e., Malvaceae, Brassicaceae, and Solanaceae, which indicate these genes were expanded following the event/s of polyploidization. Duplicated genes have been retained during evolution, although genome reorganization occurred in their flanking regions. Further investigation of sequence conservation and similarity network analyses provide evidence for functional diversification of duplicated genes during evolution. These functionally diversified genes play important roles in plant development and provide advantages to plants for adaptation and survival in response to environmental changes encountered during evolution. Collectively, we show that flowering-time genes were expanded following polyploidization and retained as large gene family by providing advantages from functional diversification during evolution.
    Neofunctionalization
    Subfunctionalization
    plant evolution
    Functional divergence
    Citations (13)
    Tubby-like proteins (TLPs) possess a highly conserved closed β barrel tubby domain at C-terminal and N-terminal F-box. The role of TLP gene family members has been widely discussed in numerous organisms; however, the detailed genome-wide study of this gene family in Gossypium species has not been reported till date. Here, we systematically identified 105 TLP gene family members in cotton ( Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum , and Gossypium barbadense ) genomes and classified them into eight phylogenetic groups. Cotton TLP12 gene family members clustered into two groups, 4 and 8. They experienced higher evolutionary pressure in comparison to others, indicating the faster evolution in both diploid as well as in tetraploid cotton. Cotton TLP gene family members expanded mainly due to segmental duplication, while only one pair of tandem duplication was found in cotton TLPs paralogous gene pairs. Subsequent qRT-PCR validation of seven putative key candidate genes of GhTLPs indicated that GhTLP11A and GhTLP12A.1 genes were highly sensitive to salt and drought stress. The co-expression network, pathways, and cis -regulatory elements of GhTLP11A and GhTLP12A.1 genes confirmed their functional importance in salt and drought stress responses. This study proposes the significance of GhTLP11A and GhTLP12A.1 genes in exerting control over salt and drought stress responses in G. hirsutum and also provides a reference for future research, elaborating the biological roles of G. hirsutum TLPs in both stress responses.
    Gossypium
    Gossypium barbadense
    Segmental duplication
    Citations (31)
    Gene duplication with subsequent divergence plays a central role in the acquisition of genes with novel function and complexity during the course of evolution. With reduced functional constraints or through positive selection, these duplicated genes may experience accelerated evolution. Under the model of subfunctionalization, loss of subfunctions leads to complementary acceleration at sites with two copies, and the difference in average rate between the sequences may not be obvious. On the other hand, the classical model of neofunctionalization predicts that the evolutionary rate in one of the two duplicates is accelerated. However, the classical model does not tell which of the duplicates experiences the acceleration in evolutionary rate. Here, we present evidence from the Saccharomyces cerevisiae genome that a duplicate located in a genomic region with a low-recombination rate is likely to evolve faster than a duplicate in an area of high recombination. This observation is consistent with population genetics theory that predicts that purifying selection is less effective in genomic regions of low recombination (Hill-Robertson effect). Together with previous studies, our results suggest the genomic background (e.g., local recombination rate) as a potential force to drive the divergence between nontandemly duplicated genes. This implies the importance of structure and complexity of genomes in the diversification of organisms via gene duplications.
    Neofunctionalization
    Subfunctionalization
    Negative selection
    Functional divergence
    Molecular evolution
    Human evolutionary genetics
    Citations (45)
    Abstract Background The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni , characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T . stephensoni . Results We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa , respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. Conclusions Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T . stephensoni .
    Sea anemone
    Gene cluster
    Functional divergence
    Neofunctionalization
    Lineage (genetic)
    Concerted evolution
    Citations (10)
    Whole-genome duplication (WGD) events have shaped the genomes of eukaryotic organisms. Relaxed selection after duplication along with inherent functional constraints are thought to determine the fate of the paralogs and, ultimately, the evolution of gene function. Here, we investigated the rate of protein evolution (as measured by dN/dS ratios) before and after the WGD in the hemiascomycete yeasts, and the way in which changes in such rates relate to molecular and biological function. For most groups of orthologous genes (81%) we observed a change in the rates of evolution after genome duplication. Genes with atypically-low dN/dS ratio before the WGD were prone to increase their rates of evolution after duplication. Importantly, the paralogs were often different in their rates of evolution after the WGD (50% cases), however, this was more consistent with an asymmetric deceleration in the protein-evolution rates, rather than an asymmetric increase of the initial rates. Functional-category analysis showed that regulatory proteins such as protein kinases and transcription factors were enriched in genes that increase their rates of evolution after the WGD. While changes in the rate of protein-sequence evolution were associated to protein abundance, content of disordered regions, and contribution to fitness, these features were an attribute of specific functional classes. Our results indicate that strong purifying selection in ancestral pre-duplication sequences is a strong predictor of increased rates after the duplication in yeasts and that asymmetry in evolution rate is established during the deceleration phase. In addition, changes in the rates at which paralogous sequences evolve before and after WGD are different for specific protein functions; increased rates of protein evolution after duplication occur preferentially in specific protein functions.
    Negative selection
    Rate of evolution
    Molecular evolution
    Neofunctionalization
    Segmental duplication
    Concerted evolution
    Functional divergence
    Citations (19)
    Abstract Gene duplication with subsequent divergence plays a central role in the acquisition of genes with novel function and complexity during the course of evolution. With reduced functional constraints or through positive selection, these duplicated genes may experience accelerated evolution. Under the model of subfunctionalization, loss of subfunctions leads to complementary acceleration at sites with two copies, and the difference in average rate between the sequences may not be obvious. On the other hand, the classical model of neofunctionalization predicts that the evolutionary rate in one of the two duplicates is accelerated. However, the classical model does not tell which of the duplicates experiences the acceleration in evolutionary rate. Here, we present evidence from the Saccharomyces cerevisiae genome that a duplicate located in a genomic region with a low-recombination rate is likely to evolve faster than a duplicate in an area of high recombination. This observation is consistent with population genetics theory that predicts that purifying selection is less effective in genomic regions of low recombination (Hill-Robertson effect). Together with previous studies, our results suggest the genomic background (e.g., local recombination rate) as a potential force to drive the divergence between nontandemly duplicated genes. This implies the importance of structure and complexity of genomes in the diversification of organisms via gene duplications.
    Neofunctionalization
    Subfunctionalization
    Negative selection
    Functional divergence
    Molecular evolution
    Human evolutionary genetics
    Citations (11)
    Abstract Inferences about the evolutionary impact of gene duplications often rely on the analysis of their long‐term outcome. The fate of the majority of them must, however, be decided shortly after duplication. Here we analysed the evolutionary pattern of 10 mouse genes very recently duplicated by retrotransposition, by sequencing the retroposed copy in five to 10 closely related mouse species. In all cases the retroposed copy experienced accelerated nonsynonymous evolution whereas the divergence pattern of the source copy appeared unaffected by the duplication, consistent with the neofunctionalization model. The analysis further revealed that most retrogenes, including pseudogenes, did not experience a period of relaxed neutral evolution, but have been submitted to purifying selection ever since their retroposition. We propose that these duplicates play a biochemical role but are not indispensable. Purifying selection prevents them from acquiring a negative role until they are lost or silenced. This period of unnecessary redundancy could in rare cases give the time for new functions to evolve.
    Neofunctionalization
    Negative selection
    Pseudogene
    Nonsynonymous substitution
    Subfunctionalization
    Positive selection
    Functional divergence
    Epistasis
    Ubiquitin is a highly conserved protein that is encoded by a multigene family. It is generally believed that this gene family is subject to concerted evolution, which homogenizes the member genes of the family. However, protein homogeneity can be attained also by strong purifying selection. We therefore studied the proportion ( p S ) of synonymous nucleotide differences between members of the ubiquitin gene family from 28 species of fungi, plants, and animals. The results have shown that p S is generally very high and is often close to the saturation level, although the protein sequence is virtually identical for all ubiquitins from fungi, plants, and animals. A small proportion of species showed a low level of p S values, but these values appeared to be caused by recent gene duplication. It was also found that the number of repeat copies of the gene family varies considerably with species, and some species harbor pseudogenes. These observations suggest that the members of this gene family evolve almost independently by silent nucleotide substitution and are subjected to birth-and-death evolution at the DNA level.
    Pseudogene
    Concerted evolution
    Ubiquitins
    Negative selection
    Subfunctionalization
    Protein family
    Molecular evolution
    Citations (150)
    Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses.Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions.Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.
    Citations (1,795)