Illusions of Visual Motion Elicited by Electrical Stimulation of Human MT Complex
Andreas M. RauscheckerMohammad DastjerdiKevin S. WeinerNathan WitthoftJanice ChenAslihan SelimbeyogluJosef Parvizi
18
Citation
65
Reference
10
Related Paper
Citation Trend
Abstract:
Human cortical area MT+ (hMT+) is known to respond to visual motion stimuli, but its causal role in the conscious experience of motion remains largely unexplored. Studies in non-human primates demonstrate that altering activity in area MT can influence motion perception judgments, but animal studies are inherently limited in assessing subjective conscious experience. In the current study, we use functional magnetic resonance imaging (fMRI), intracranial electrocorticography (ECoG), and electrical brain stimulation (EBS) in three patients implanted with intracranial electrodes to address the role of area hMT+ in conscious visual motion perception. We show that in conscious human subjects, reproducible illusory motion can be elicited by electrical stimulation of hMT+. These visual motion percepts only occurred when the site of stimulation overlapped directly with the region of the brain that had increased fMRI and electrophysiological activity during moving compared to static visual stimuli in the same individual subjects. Electrical stimulation in neighboring regions failed to produce illusory motion. Our study provides evidence for the sufficient causal link between the hMT+ network and the human conscious experience of visual motion. It also suggests a clear spatial relationship between fMRI signal and ECoG activity in the human brain.Keywords:
Photic Stimulation
Functional electrical stimulation
Physical Stimulation
Visual perception by individuals with schizophrenia has not been extensively researched. The focus of this review is the perception of physiological visual illusions by patients with schizophrenia, a differences of perception reported in a small number of studies. Increased or decreased susceptibility of these patients to various illusions seems to be unconnected to the location of origin in the visual apparatus, which also takes place in illusions connected to other modalities. The susceptibility of patients with schizophrenia to haptic illusions has not yet been investigated, although the need for such investigation has been is clear. The emerging picture is that some individuals with schizophrenia are "resistant" to some of the illusions and are able to assess visual phenomena more "rationally", yet certain illusions (ex. Müller-Lyer's) are perceived more intensely. Disturbances in the perception of visual illusions have neither been classified as possible diagnostic indicators of a dangerous mental condition, nor included in the endophenotype of schizophrenia. Although the relevant data are sparse, the ability to replicate the results is limited, and the research model lacks a "gold standard", some preliminary conclusions may be drawn. There are indications that disturbances in visual perception are connected to the extent of disorganization, poor initial social functioning, poor prognosis, and the types of schizophrenia described as neurodevelopmental. Patients with schizophrenia usually fail to perceive those illusions that require volitional controlled attention, and show lack of sensitivity to the contrast between shape and background.
Endophenotype
Perceptual Disorders
Cite
Citations (5)
Experimental psychology
Psychological research
Behavioural sciences
Cite
Citations (49)
Distortion (music)
Cite
Citations (3)
Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments.
Stimulus (psychology)
Photic Stimulation
Visual N1
Surround suppression
Calcium imaging
P200
Cite
Citations (47)
Visual illusions are objects that are made up of elements that are arranged in such a way as to result in erroneous perception of the objects' physical properties. Visual illusions are used to study visual perception in humans and nonhuman animals, since they provide insight into the psychological and cognitive processes underlying the perceptual system. In a set of three experiments, we examined whether dogs were able to learn a relational discrimination and to perceive the Müller-Lyer illusion. In Experiment 1, dogs were trained to discriminate line lengths using a two-alternative forced choice procedure on a touchscreen. Upon learning the discrimination, dogs' generalization to novel exemplars and the threshold of their abilities were tested. In the second experiment, dogs were presented with the Müller-Lyer illusion as test trials, alongside additional test trials that controlled for overall stimulus size. Dogs appeared to perceive the illusion; however, control trials revealed that they were using global size to solve the task. Experiment 3 presented modified stimuli that have been known to enhance perception of the illusion in other species. However, the dogs' performance remained the same. These findings reveal evidence of relational learning in dogs. However, their failure to perceive the illusion emphasizes the importance of using a full array of control trials when examining these paradigms, and it suggests that visual acuity may play a crucial role in this perceptual phenomenon.
Stimulus (psychology)
Cite
Citations (20)
In Mixed-Realty (MR) space, the visual appearance (shape, texture, etc.) of a real object can be changed by superimposing a virtual object on it. Therefore, by creating systematic differences between visual and haptic perceptions using MR technology, we can analyze their influence on temperature perception. In our research group, we defined the changes in the visual information of a real object in MR space as "MR visual stimulation" and examine the influence of the haptic sense using MR visual stimulation [1]. For our research, we focused on the temperature perception of the skin. In the first step, we verified the influence presenting MR visual stimulation has on the perceived position of the temperature perception. In the experiment, we presented MR visual stimulation and temperature stimulation in different positions. We confirmed the influence this difference has on the temperature perceived position. Our results demonstrate that temperature perception is strongly affected by visual stimulation.
Cite
Citations (1)
Stimulus (psychology)
Cite
Citations (14)
Neuropsychological studies prompted the theory that the primate visual system might be organized into two parallel pathways, one for conscious perception and one for guiding action. Supporting evidence in healthy subjects seemed to come from a dissociation in visual illusions: In previous studies, the Ebbinghaus (or Titchener) illusion deceived perceptual judgments of size, but only marginally influenced the size estimates used in grasping. Contrary to those results, the findings from the present study show that there is no difference in the sizes of the perceptual and grasp illusions if the perceptual and grasping tasks are appropriately matched. We show that the differences found previously can be accounted for by a hitherto unknown, nonadditive effect in the illusion. We conclude that the illusion does not provide evidence for the existence of two distinct pathways for perception and action in the visual system.
Cite
Citations (467)
What is difficult to imagine is also surprising to perceive. This indicates that active visual imagery is an integral part of active visual perception. Erroneous mental transformations provide clues to prior assumptions in visual imagery, just as visual illusions provide clues to perceptual assumptions. Visual imagery and perception share generic assumptions about invariants in images of rigid objects.
Cite
Citations (4)
In my first post I argued that inconsistencies in visual space reflect a conflict between visual experience and perceptual judgement. In this second post I argue that the same approach can be applied to (a) the integration of depth cues, and (b) illusions of visual space, to show that they too operate at the level of cognition rather than perception.
Visual space
Judgement
Cite
Citations (3)