logo
    Impaired Redox Signaling and Antioxidant Gene Expression in Endothelial Cells in Diabetes: A Role for Mitochondria and the Nuclear Factor-E2-Related Factor 2-Kelch-Like ECH-Associated Protein 1 Defense Pathway
    179
    Citation
    223
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Type 2 diabetes is an age-related disease associated with vascular pathologies, including severe blindness, renal failure, atherosclerosis, and stroke. Reactive oxygen species (ROS), especially mitochondrial ROS, play a key role in regulating the cellular redox status, and an overproduction of ROS may in part underlie the pathogenesis of diabetes and other age-related diseases. Cells have evolved endogenous defense mechanisms against sustained oxidative stress such as the redox-sensitive transcription factor nuclear factor E2-related factor 2 (Nrf2), which regulates antioxidant response element (ARE/electrophile response element)-mediated expression of detoxifying and antioxidant enzymes and the cystine/glutamate transporter involved in glutathione biosynthesis. We hypothesize that diminished Nrf2/ARE activity contributes to increased oxidative stress and mitochondrial dysfunction in the vasculature leading to endothelial dysfunction, insulin resistance, and abnormal angiogenesis observed in diabetes. Sustained hyperglycemia further exacerbates redox dysregulation, thereby providing a positive feedback loop for severe diabetic complications. This review focuses on the role that Nrf2/ARE-linked gene expression plays in regulating endothelial redox homeostasis in health and type 2 diabetes, highlighting recent evidence that Nrf2 may provide a therapeutic target for countering oxidative stress associated with vascular disease and aging. Antioxid. Redox Signal. 14, 469–488.
    Keywords:
    Mitochondrial ROS
    Endothelial Dysfunction
    Objective High levels of reactive oxygen species (ROS) are intricately linked to obesity and associated pathologies, notably insulin resistance and type 2 diabetes. However, ROS are also thought to be important in intracellular signaling, which may paradoxically be required for insulin sensitivity. Many theories have been developed to explain this apparent paradox, which have broadened our understanding of these important small molecules. While many sites for intracellular ROS production have been described, mitochondrial generated ROS remain a major contributor in most cell types. Mitochondrial ROS generation is controlled by a number of factors described in this review. Moreover, these studies have established both a demand for novel sensitive approaches to measure ROS, as well as a need to standardize and review their suitability for different applications. Methods To properly assess levels of ROS and mitochondrial ROS in the development of obesity and its complications, a growing number of tools have been developed. This paper reviews many of the common methods for the investigation of ROS in mitochondria, cell, animal, and human models. Results Available approaches can be generally divided into those that measure ROS‐induced damage (e.g., DNA, lipid, and protein damage); those that measure antioxidant levels and redox ratios; and those that use novel biosensors and probes for a more direct measure of different forms of ROS (e.g., 2′,7′‐di‐chlorofluorescein (DCF), dihydroethidium (DHE) and its mitochondrial targeted form (MitoSOX), Amplex Red, roGFP, HyPer, mt‐cpYFP, ratiometric H 2 O 2 probes, and their derivatives). Moreover, this review provides caveats and strengths for the use of these techniques in different models. Conclusions Advances in these techniques will undoubtedly advance the understanding of ROS in obesity and may help resolve unanswered questions in the field.
    Mitochondrial ROS
    Citations (220)
    Abstract Oxidative stress causes damage to cells by creating reactive oxygen species (ROS) and the overproduction of ROS have been linked to the onset of premature ageing. We previously found that a brap-2 (BRCA1 associated protein 2) mutant significantly increases the expression of phase II detoxification enzymes in C. elegans. An RNAi suppression screen to identify transcription factors involved in the production of gst-4 mRNA in brap-2 worms identified SEM-4 as a potential candidate. Here, we show that knockdown of sem-4 suppresses the activation of gst-4 caused by the mutation in brap-2. We also demonstrate that sem-4 is required for survival upon exposure to oxidative stress and that SEM-4 is required for expression of the transcription factor SKN-1C. These findings identify a novel role for SEM-4 in ROS detoxification by regulating expression of SKN-1C and the phase II detoxification genes. Article Summary Reactive oxygen species have been implicated as a harmful agent in many age-related diseases as well as an important signaling molecule. The transcription factor SKN-1 in C. elegans is an important regulator of reactive oxygen species levels. Here we show that the transcription factor SEM-4 is required to activate the expression of skn-1c and promote phase II detoxification gene expression. These findings identify a novel role for SEM-4 in regulating reactive oxygen species levels.
    Transcription
    Detoxification
    Citations (0)
    Oxidative stress is considered a major contributor to the etiology of both “normal” senescence and severe pathologies with serious public health implications. Several cellular sources, including mitochondria, are known to produce significant amounts of reactive oxygen species (ROS) that may contribute to intracellular oxidative stress. Mitochondria possess at least 10 known sites that are capable of generating ROS, but they also feature a sophisticated multilayered ROS defense system that is much less studied. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal at the level of mitochondria. An integrative systemic approach is applied to analysis of mitochondrial ROS metabolism, which is “dissected” into ROS generation, ROS emission, and ROS scavenging. The in vitro ROS‐producing capacity of several mitochondrial sites is compared in the metabolic context and the role of mitochondria in ROS‐dependent intracellular signaling is discussed.
    Mitochondrial ROS
    Citations (778)
    The production of reactive oxygen species (ROS) from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (). Because depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the "death zone" in mountaineering.
    Mitochondrial ROS
    Hyperoxia
    Hypoxia