logo
    It is shown that the high energy limits in quantum field theory can be determined starting from Bogoliubov's and Symanzik's dispersion relations if the Boson propagator and pion-nucleon forward scattering amplitude have no zero on their complex energy planes. A possibility excluding zeros is discussed using Nambu's method in perturbation theory.
    Propagator
    Dispersion relation
    Field theory (psychology)
    Citations (3)
    We review the most recent data from e{sup +}e{sup {minus}} and p{bar p} colliders and discuss the resulting constraints on the parameters of the Minimal Supersymmetric Standard Model, and their implications for future supersymmetry searches. We review the patterns of cascade decays of squarks and gluinos and discuss the present status of supersymmetry event generators for hadron colliders. We present the results of detailed simulations of E{sub T} and same sign dilepton events from supersymmetry at the Tevatron. Although the E{sub T} signal continues to be viable, it is concluded that the same sign dilepton signal may be too small unless squarks and gluinos are approximately degenerate. The E{sub T} and the same-sign dilepton signals from supersymmetry and the Standard Model backgrounds at the SSC are also discussed in detail. We also discuss other promising ways of searching for supersymmetry at the SSC including events containing Z{degree} bosons, and events containing n isolated leptons (n {ge} 3). Finally, we discuss how supersymmetry searches might be modified if the Higgs sectors is more complicated or if R-parity is not conserved due to baryon number violating interactions. 49 refs., 12 figs.
    Baryon number
    R-parity
    Superpartner
    Citations (1)
    Gauge theories in 2+1 dimensions can admit monopole operators in the potential. Starting with the theory without monopole potential, if the monopole potential is relevant there is an RG flow to the monopole-deformed theory. Here, focusing on U(N c ) SQCD with N f flavors and $$ \mathcal{N}=2 $$ supersymmetry, we show that even when the monopole potential is irrelevant, the monopole-modified theory $$ {\mathcal{T}}_{\mathfrak{M}} $$ can exist and enjoy Seiberg-like dualities. We provide a renormalizable UV completion of $$ {\mathcal{T}}_{\mathfrak{M}} $$ and an electric-magnetic dual description $$ {\mathcal{T}}_{\mathfrak{M}}^{\prime } $$ . We subject our proposal to various consistency checks such as mass deformations and S 3 partition functions checks. We observe that $$ {\mathcal{T}}_{\mathfrak{M}} $$ is the S-duality wall of 4D $$ \mathcal{N}=2 $$ SQCD. We also consider monopole-deformed theories with Chern-Simons couplings and their duals.
    Dual polyhedron
    Duality (order theory)
    Dyon
    Citations (77)
    We show that in the dual version of the generalized Dick model monopole-anti-monopole pairs have finite energy. It is possible to use the potential between monopole and anti-monopole to find the mass spectrum of the glueballs. The results are discussed in connection with the Faddeev-Niemi model and toroidal soliton solutions. Some others finite energy configurations are found, both in the magnetic and electric sector.
    Recently, we have shown the existence of a finite energy one-half monopole. In this paper, we would like to introduce electric charge into the one-half monopole configuration, thus creating a one-half dyon. This one-half dyon possesses finite energy, magnetic dipole moment and angular momentum. Hence it is able to rotate in the presence of an external magnetic field. Similar to the single pole dyons and the MAP dyons, this one-half dyon possesses critical (maximum) electric charge, total energy, and magnetic dipole moment when the Higgs self-coupling constant is nonvanishing, and the electric charge parameter approaches one. This one-half dyon solution does not satisfy the first order Bogomol'nyi equations and is a non-BPS solution in the limit of vanishing Higgs self-coupling constant.
    Dyon
    Coupling constant
    Electric charge
    We consider a scenario where supersymmetry is broken at a high energy scale, out of reach of the LHC, but leaves a few fermionic states at the TeV scale. The particle content of the low-energy effective theory is similar to that of Split Supersymmetry. However, the gauginos and higgsinos are replaced by fermions carrying the same quantum numbers but having different couplings, which we call fake gauginos and fake higgsinos. We study the prediction for the light-Higgs mass in this Fake Split SUSY Model (FSSM). We find that, in contrast to Split or high-scale supersymmetry, a 126 GeV Higgs boson is easily obtained even for arbitrarily high values of the supersymmetry scale. For a supersymmetry scale greater than roughly 100 PeV, the Higgs mass is almost independent of the supersymmetry scale and the stop mixing parameter, while the observed value is achieved for tan beta between 1.3 and 1.8 depending on the gluino mass.
    Gluino
    Citations (22)
    By integrating exactly the effective Bose field theory which describes the s-wave fermion-magnetic monopole system, the authors show that the condensate around a gauge theory monopole is electrically neutral. So the fermion-monopole scattering is of pure helicity flip due to the chiral condensate.
    Helicity
    Electric charge
    Charge conservation
    The nationally-recognized Susquehanna Chorale will delight audiences of all ages with a diverse mix of classic and contemporary pieces. The ChoraleAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚™s performances have been described as AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚œemotionally unfiltered, honest music making, successful in their aim to make the audience feel, to be moved, to be part of the performance - and all this while working at an extremely high musical level.AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ Experience choral singing that will take you to new heights!
    Citations (0)