logo
    Barefoot Versus Shoe Running: From the Past to the Present
    11
    Citation
    29
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    AbstractIntroduction: Barefoot running is not a new concept, but relatively few people choose to engage in barefoot running on a regular basis. Despite the technological developments in modern running footwear, as many as 79% of runners are injured every year. Although benefits of barefoot running have been proposed, there are also potential risks associated with it. Objective: To review the evidence-based literature concerning barefoot/minimal footwear running and the implications for the practicing physician. Materials and Methods: Multiple publications were reviewed using an electronic search of databases such as Medline, Cinahl, Embase, PubMed, and Cochrane Database from inception until August 30, 2013 using the search terms barefoot running, barefoot running biomechanics, and shoe vs. barefoot running. Results: Ninety-six relevant articles were found. Most were reviews of biomechanical and kinematic studies. Analysis: There are notable differences in gait and other parameters between barefoot running and shoe running. Based on these findings and much anecdotal evidence, one could conclude that barefoot runners should have fewer injuries, better performance, or both. Several athletic shoe companies have designed running shoes that attempt to mimic the barefoot condition, and thus garner the purported benefits of barefoot running. Conclusion: Although there is no evidence that confirms or refutes improved performance and reduced injuries in barefoot runners, many of the claimed disadvantages to barefoot running are not supported by the literature. Nonetheless, it seems that barefoot running may be an acceptable training method for athletes and coaches, as it may minimize the risks of injury.Keywords: barefoot runningshoe runningbiomechanicsminimalistic shoesrunningView correction statement:Erratum
    Keywords:
    Barefoot
    CINAHL
    Poststroke hemiplegic gait is a mixture of deviations and compensatory motion dictated by residual functions, and thus each patient must be examined and his/her unique gait pattern identified and documented. Quantitative 3‐dimensional gait analysis is the best way to understand the complex multifactorial gait dysfunction in hemiparetic patients. The goals of the present work are to (1) review the temporospatial, kinematic, kinetic, and electromyographic deviations from normal gait that commonly occur after stroke and are of clinical significance, along with the most likely causes of these deviations, and (2) differentiate the departures from normal gait parameters that arise as a direct consequence of poststroke motor problems and those that arise as learned or adaptive compensations for poststroke motor problems.
    Stroke
    Citations (341)
    This pilot study examined the effect of custom and prefabricated foot orthoses on self-selected walking speed, walking speed variability, and dynamic balance in the mediolateral direction.The gait of four healthy participants was analyzed with a body-worn sensor system across a distance of at least 30 m outside of the gait laboratory. Participants walked at their habitual speed in four conditions: barefoot, regular shoes, prefabricated foot orthoses, and custom foot orthoses.In the custom foot orthoses condition, gait speed was improved on average 13.5% over the barefoot condition and 9.8% over the regular shoe condition. The mediolateral range of motion of center of mass was reduced 55% and 56% compared with the shoes alone and prefabricated foot orthoses conditions, respectively. This may suggest better gait efficiency and lower energy cost with custom foot orthoses. This tendency remained after normalizing center of mass by gait speed, suggesting that irrespective of gait speed, custom foot orthoses improve center of mass motion in the mediolateral direction compared with other footwear conditions. Gait intercycle variability, measured by intercycle coefficient of variation of gait speed, was decreased on average by 25% and 19% compared with the barefoot and shoes-alone conditions, respectively. The decrease in gait unsteadiness after wearing custom foot orthoses may suggest improved proprioception from the increased contact area of custom foot orthoses versus the barefoot condition.These findings may open new avenues for objective assessment of the impact of prescribed footwear on dynamic balance and spatiotemporal parameters of gait and assess gait adaptation after use of custom foot orthoses.
    Proof of concept
    Citations (17)
    Knee osteoarthritis (KOA) may considerably change the gait parameters, including the gait variability patterns. Uncontrolled manifold (UCM) analysis has been used to evaluate the relationship between motor control and gait variability as a useful index for assessing the multi-segmental movements' coordination during walking. To our knowledge, no research has evaluated the alterations in the gait kinematic parameters during normal and narrow path walking in individuals with KOA as compared to asymptomatic people.In this cross-sectional study, individuals diagnosed with mild to moderate medial KOA and asymptomatic people will walk at their comfortable preferred speed on a treadmill. A motion capture system will be used to record at least 50 successful gait cycles. The kinematic variability of joints during gait will be analyzed using UCM, with the center of mass (COM) displacement considered as the performance variable. The primary outcome measure will be the lower limb synergy index. Variability of the COM displacement and changes in angles and angular velocities of lower extremity joints will be assessed as the secondary outcomes.The results of this protocol study provide information on the lower limb kinematic synergy during gait on normal and narrow paths for individuals with KOA and asymptomatic controls.This information will help the researchers and clinicians understand KOA patients' gait variability characteristics more deeply. Moreover, it may lead to an enhanced evidence-based approach for clinical decision-making concerning improving gait stability and decreasing the falling risk in these people.
    Treadmill
    Citations (1)
    Background: We explored gait differences in patients with diabetes and peripheral neuropathy (DPN) and aged-matched controls over short and long walking distances. The potential benefit of footwear for improving gait in patients with DPN was also explored. Methods: Twelve patients with DPN and eight controls walked at their habitual speed over short (7 m) and long (20 m) distances under two conditions: barefoot and regular shoes. A validated system of body-worn sensors was used to extract spatiotemporal gait parameters. Neuropathy severity was quantified using vibratory perception threshold measured at the great toe. Results: Gait deterioration in the DPN group was observed during all of the walking trials. However, the difference between patients with DPN and participants in the control group achieved statistical significance only during long walking distance trials. Shod and barefoot double support times were longer in the DPN group during long walking distances (>20%, P = .03). Gait unsteadiness, defined as coefficient of variation of gait velocity, was also significantly higher in the DPN group when barefoot walking over long distances (83%, P = .008). Furthermore, there was a high correlation between neuropathy severity and gait unsteadiness best demonstrated during the barefoot walking/long walking distance condition ( r = 0.77, P < .001). The addition of footwear improved gait steadiness in the DPN group by 46% ( P = .02). All differences were independent of age, sex, and body mass index ( P > .05). Conclusions: This study suggests that gait alteration in patients with DPN is most pronounced while walking barefoot over longer distances and that footwear may improve gait steadiness in patients with DPN. (J Am Podiatr Med Assoc 103(3): 165–173, 2013)
    Barefoot
    Diabetic Neuropathy
    Citations (40)