logo
    Fragment-based drug discovery and protein–protein interactions
    17
    Citation
    74
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract: Protein–protein interactions (PPIs) are involved in many biological processes, with an estimated 400,000 PPIs within the human proteome. There is significant interest in exploiting the relatively unexplored potential of these interactions in drug discovery, driven by the need to find new therapeutic targets. Compared with classical drug discovery against targets with well-defined binding sites, developing small-molecule inhibitors against PPIs where the contact surfaces are frequently more extensive and comparatively flat, with most of the binding energy localized in "hot spots", has proven far more challenging. However, despite the difficulties associated with targeting PPIs, important progress has been made in recent years with fragment-based drug discovery playing a pivotal role in improving their tractability. Computational and empirical approaches can be used to identify hot-spot regions and assess the druggability and ligandability of new targets, whilst fragment screening campaigns can detect low-affinity fragments that either directly or indirectly perturb the PPI. Once fragment hits have been identified and confirmed using biochemical and biophysical approaches, three-dimensional structural data derived from nuclear magnetic resonance or X-ray crystallography can be used to drive medicinal chemistry efforts towards the development of more potent inhibitors. A small-scale comparison presented in this review of "standard" fragments with those targeting PPIs has revealed that the latter tend to be larger, be more lipophilic, and contain more polar (acid/base) functionality, whereas three-dimensional descriptor data indicate that there is little difference in their three-dimensional character. These physiochemical properties can potentially be exploited in the rational design of PPI-specific fragment libraries and correlate well with optimized PPI inhibitors, which tend to have properties outside currently accepted guidelines for drug-likeness. Several examples of small-molecule PPI inhibitors derived from fragment-based drug discovery now exist and are described in this review, including navitoclax, a novel Bcl-2 family inhibitor which has entered Phase II clinical trials in patients with small-cell lung cancer and chronic lymphocytic leukemia. Keywords: hot spot, druggability, ligandability
    Keywords:
    Druggability
    Proteome
    Fragment (logic)
    As the pivotal role of protein–protein interactions in cell growth, transcriptional activity, intracellular trafficking, signal transduction and pathological conditions has been assessed, experimental and in silico strategies have been developed to design protein–protein interaction modulators. State-of-the-art structure-based design methods, mainly pharmacophore modeling and docking, which have succeeded in the identification of enzyme inhibitors, receptor agonists and antagonists, and new tools specifically conceived to target protein–protein interfaces (e.g., hot-spot and druggable pocket prediction methods) have been applied in the search for small-molecule protein–protein interaction modulators. Many successful applications of structure-based design approaches that, despite the challenge of targeting protein–protein interfaces with small molecules, have led to the identification of micromolar and submicromolar hits are reviewed here.
    Druggability
    Docking (animal)
    Target protein
    Citations (52)
    RNA molecules have a variety of cellular functions that can drive disease pathologies. They are without a doubt one of the most intriguing yet controversial small-molecule drug targets. The ability to widely target RNA with small molecules could be revolutionary, once the right tools, assays, and targets are selected, thereby defining which biomolecules are targetable and what constitutes drug-like small molecules. Indeed, approaches developed over the past 5-10 years have changed the face of small molecule-RNA targeting by addressing historic concerns regarding affinity, selectivity, and structural dynamics. Presently, selective RNA-protein complex stabilizing drugs such as branaplam and risdiplam are in clinical trials for the modulation of SMN2 splicing, compounds identified from phenotypic screens with serendipitous outcomes. Fully developing RNA as a druggable target will require a target engagement-driven approach, and evolving chemical collections will be important for the industrial development of this class of target. In this review we discuss target-directed approaches that can be used to identify RNA-binding compounds and the chemical knowledge we have today of small-molecule RNA binders.
    Druggability
    Chemical Biology
    Biomolecule
    Drug Development
    Riboswitch
    Citations (31)
    Bioactive small molecules are an invaluable source of therapeutics and chemical probes for exploring biological pathways. Yet, significant hurdles in drug discovery often come from lacking a comprehensive view of the target(s) for both early tool molecules and even late-stage drugs. To address this challenge, a method is provided that allows for assessing the interactions of small molecules with thousands of targets without any need to modify the small molecule of interest or attach any component to a surface. We describe size-exclusion chromatography for target identification (SEC-TID), a method for accurately and reproducibly detecting ligand-macromolecular interactions for small molecules targeting nucleic acid and several protein classes. We report the use of SEC-TID, with a library consisting of approximately 1000 purified proteins derived from the protein databank (PDB), to identify the efficacy targets tankyrase 1 and 2 for the Wnt inhibitor XAV939. In addition, we report novel interactions for the tumor-vascular disrupting agent vadimezan/ASA404 (interacting with farnesyl pyrophosphate synthase) and the diuretic mefruside (interacting with carbonic anhydrase XIII). We believe this method can dramatically enhance our understanding of the mechanism of action and potential liabilities for small molecules in drug discovery pipelines through comprehensive profiling of candidate druggable targets.
    Druggability
    Farnesyl pyrophosphate
    Citations (21)
    Fragment-based drug design began more than ten years ago and has been steadily gaining in popularity. This review discusses how fragments have been used to choose druggable targets, and what parameters need to be evaluated if a fragment hit is to be considered a suitable ligand for development. Examples of fragment-based screening from the recent literature are reviewed to highlight the various approaches used, along with the possible application of additional techniques to fragment screening against immobilized targets. Finally, mention is made of two different areas, multi-target drug discovery and selective tumor cell targeting, where fragment-based approaches may play an important role in the future.
    Fragment (logic)
    Druggability
    Popularity
    Citations (22)
    Despite intense interest and considerable effort via high-throughput screening, there are few examples of small molecules that directly inhibit protein-protein interactions. This suggests that many protein interaction surfaces may not be intrinsically "druggable" by small molecules, and elevates in importance the few successful examples as model systems for improving our fundamental understanding of druggability. Here we describe an approach for exploring protein fluctuations enriched in conformations containing surface pockets suitable for small molecule binding. Starting from a set of seven unbound protein structures, we find that the presence of low-energy pocket-containing conformations is indeed a signature of druggable protein interaction sites and that analogous surface pockets are not formed elsewhere on the protein. We further find that ensembles of conformations generated with this biased approach structurally resemble known inhibitor-bound structures more closely than equivalent ensembles of unbiased conformations. Collectively these results suggest that "druggability" is a property encoded on a protein surface through its propensity to form pockets, and inspire a model in which the crude features of the predisposed pocket(s) restrict the range of complementary ligands; additional smaller conformational changes then respond to details of a particular ligand. We anticipate that the insights described here will prove useful in selecting protein targets for therapeutic intervention.
    Druggability
    Surface protein
    The current computational methods available to fragment-based drug discovery (FBDD) are not without their own challenges and limitations. With the exception of the development of fragment screening libraries, all methods discussed in this chapter require knowledge of the protein three-dimensional structure. Knowledge of the binding site size, shape, and chemical functionalities can be used throughout the FBDD process, steering fragment library design, assessing druggability of a binding site, and extending core fragments. The application of computational methods to FBDD has been without problems; in others, most notably, fragment docking, modifications are required to properly address the unique energetics and dynamics of fragment binding. Fragment expansion is by necessity addressed using computational methods and is often approached as a combinatorial problem.
    Druggability
    Fragment (logic)