Mouse recombinant protein C variants with enhanced membrane affinity and hyper‐anticoagulant activity in mouse plasma
10
Citation
51
Reference
10
Related Paper
Citation Trend
Abstract:
Mouse anticoagulant protein C (461 residues) shares 69% sequence identity with its human ortholog. Interspecies experiments suggest that there is an incompatibility between mouse and human protein C, such that human protein C does not function efficiently in mouse plasma, nor does mouse protein C function efficiently in human plasma. Previously, we described a series of human activated protein C (APC) Gla domain mutants (e.g. QGNSEDY‐APC), with enhanced membrane affinity that also served as superior anticoagulants. To characterize these Gla mutants further in mouse models of diseases, the analogous mutations were now made in mouse protein C. In total, seven mutants (mutated at one or more of positions P 10 S 12 D 23 Q 32 N 33 ) and wild‐type protein C were expressed and purified to homogeneity. In a surface plasmon resonance‐based membrane‐binding assay, several high affinity protein C mutants were identified. In Ca 2+ titration experiments, the high affinity variants had a significantly reduced (four‐fold) Ca 2+ requirement for half‐maximum binding. In a tissue factor‐initiated thrombin generation assay using mouse plasma, all mouse APC variants, including wild‐type, could completely inhibit thrombin generation; however, one of the variants denoted mutant III (P10Q/S12N/D23S/Q32E/N33D) was found to be a 30‐ to 50‐fold better anticoagulant compared to the wild‐type protein. This mouse APC variant will be attractive to use in mouse models aiming to elucidate the in vivo effects of APC variants with enhanced anticoagulant activity.Keywords:
Wild type
Mutant protein
Protein A/G
Summary Protein S is a vitamin K-dependent plasma protein that functions as an APC-cofactor, but also exhibits anticoagulant activity in the absence of APC. The Heerlen polymorphism of protein S is characterized by a Ser460Pro substitution and lacks glycosylation at Asn458. It is associated with decreased protein S levels due to selective deficiency of free protein S Heerlen.To understand the lack of thrombotic complications associated with the protein S Heerlen mutation, we compared recombinant protein S Heerlen, wild type (wt) protein S and plasmaderived protein S. wt-Protein S and protein S Heerlen each bound 1:1 to C4BP with dissociation constants of 0.27 and 0.33 nM, respectively. Both wt-protein S and protein S Heerlen, either free or in complex with C4BP, were equally active as prothrombinase inhibitors in the absence of APC. All three protein S preparations stimulated APC-catalyzed inactivation of normal FVa, FVa Leiden and FVIIIa to the same extent. If extrapolated to plasma, it is not likely that the decreased free protein S levels in carriers of the protein S Heerlen mutation are compensated by an increased anticoagulant activity of protein S Heerlen-C4BP complexes. It is possible that an unrecognized plasma factor selectively enhances the anticoagulant activity of protein S Heerlen. If not, the reduction of free protein S levels in heterozygous protein S Heerlen-carriers combined with (low) normal total protein S levels apparently minimally affects the total anticoagulant activity of protein S (APC-cofactor and APC-independent activity) and hence is not associated with increased risk of venous thrombosis.
Protein A/G
Factor V
Protein G
Cite
Citations (14)
Protein A/G
Thromboplastin
Myeloma protein
Cite
Citations (47)
Activated protein C exerts its anticoagulant activity by protein S-dependent inactivation of factors Va and VIIIa by limited proteolysis. We identified a venous thrombosis patient who has plasma protein C antigen level of 63% and activity levels of 44% and 23%, as monitored by chromogenic and clotting assays. Genetic analysis revealed the proband carries compound heterozygous mutations (c.344T>A, p.I73N and c.1181G>A, p.R352Q) in PROC We individually expressed protein C mutations and discovered that thrombin-thrombomodulin activates both variants normally and the resulting activated protein C mutants exhibit normal amidolytic and proteolytic activities. However, while protein S-dependent catalytic activity of activated protein C-R352Q toward factor Va was normal, it was significantly impaired for activated protein C-I73N. These results suggest that the Ile to Asn substitution impairs interaction of activated protein C-I73N with protein S. This conclusion was supported by a normal anticoagulant activity for activated protein C-I73N in protein S-deficient but not in normal plasma. Further analysis revealed Ile to Asn substitution introduces a new glycosylation site on first EGF-like domain of protein C, thereby adversely affecting interaction of activated protein C with protein S. Activated protein C-R352Q only exhibited reduced activity in sub-physiological concentrations of Na+ and Ca2+, suggesting that this residue contributes to metal ion-binding affinity of the protease, with no apparent adverse effect on its function in the presence of physiological levels of metal ions. These results provide insight into the mechanism by which I73N/R352Q mutations in activated protein C cause thrombosis in proband carrying this compound heterozygous mutation.
Cite
Citations (9)
Prothrombinase
Factor V
Factor IXa
Protein A/G
Factor IX
Intrinsic factor
Cite
Citations (86)
Thrombomodulin
Protein A/G
Cite
Citations (0)
Protein S, the cofactor of activated protein C (APC), also expresses anticoagulant activity independent of APC by directly inhibiting prothrombin activation via interactions with factor Xa, factor Va, and phospholipids. In different studies, however, large variations in APC-independent anticoagulant activities have been reported for protein S. The investigation presented here shows that within purified protein S preparations different forms of protein S are present, of which a hitherto unrecognized form (<5% of total protein S) binds with high affinity to phospholipid bilayers (Kd < 1 nM). The remaining protein S (>95%) has a low affinity (Kd = 250 nM) for phospholipids. Using their different affinities for phospholipids, separation of the forms of protein S was achieved. Native polyacrylamide gel electrophoresis demonstrated that the form of protein S that binds to phospholipids with low affinity migrated as a single band, whereas the high-affinity protein S exhibited several bands that migrated with reduced mobility. Size-exclusion chromatography revealed that the slower-migrating bands represented multimeric forms of protein S. Multimeric protein S (<5% of total protein S) appeared to have a 100-fold higher APC-independent anticoagulant activity than the abundant form of protein S. Comparison of purified protein S preparations that exhibited a 4-fold difference in APC-independent anticoagulant activity showed that the ability to inhibit prothrombin activation correlated with the content of multimeric protein S. Multimeric protein S could not be identified in normal human plasma, and it is therefore unlikely that this form of protein S contributes to the APC-independent anticoagulant activity of protein S that is observed in plasma.
Cite
Citations (44)
Factor V
Mutant protein
Factor VII
Protein S deficiency
Protein A/G
Wild type
Cite
Citations (13)
Zymogen
Protein A/G
Proteolysis
Protein G
Cite
Citations (5)
Mutant protein
Factor V
Protein A/G
Wild type
Factor VII
Cite
Citations (36)
Prothrombinase
Factor V
Factor IXa
Factor IX
Protein A/G
Intrinsic factor
Cite
Citations (7)