logo
    Transiting Exoplanet Simulations with the James Webb Space Telescope
    20
    Citation
    0
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    In this white paper, we assess the potential for JWST to characterize the atmospheres of super-Earth exoplanets, by simulating a range of transiting spectra with different masses and temperatures. Our results are based on a JWST simulator tuned to the expected performance of the workhorse spectroscopic instrument NIRSpec, and is based on the latest exoplanet transit models by Howe & Burrows (2012). This study is especially timely since the observing modes for the science instruments on JWST are finalized (Clampin 2010) and because NASA has selected the TESS mission as an upcoming Explorer. TESS is expected to identify more than 1000 transiting exoplanet candidates, including a sample of about 100 nearby (<50 pc) super- Earths (Ricker et al. 2010).
    Abstract A number of transiting, potentially habitable Earth-sized exoplanets have recently been detected around several nearby M dwarf stars. These worlds represent important targets for atmospheric characterization for the upcoming NASA James Webb Space Telescope (JWST). Given that available time for exoplanet characterization will be limited, it is critically important to first understand the capabilities and limitations of JWST when attempting to detect atmospheric constituents for potentially Earth-like worlds orbiting cool stars. Here, we explore coupled climate-chemistry atmospheric models for Earth-like planets orbiting a grid of M dwarf hosts. Using a newly-developed and validated JWST instrument model—the JWST Exoplanet Transit Simulator—we investigate the detectability of key biosignature and habitability indicator gaseous species for a variety of relevant instruments and observing modes. Spectrally resolved detection scenarios as well as cases where the spectral impact of a given species is integrated across the entire range of an instrument/mode are considered and serve to highlight the importance of considering information gained over an entire observable spectral range. Our results indicate that detectability of gases at individual wavelengths is overly challenging for JWST but integrating the spectral impact of a species across the entire wavelength range of an instrument/mode significantly improves requisite detection times. When considering the entire spectral coverage of an instrument/mode, detections of methane, carbon dioxide, oxygen and water at signal-to-noise ratio 5 could be achieved with observations of several tens of transits (or less) for cloud-free Earth-like worlds orbiting mid- to late-type M dwarfs at system distances of up to 10–15 pc. When compared to previous results, requisite exposure times for gas species detection depend on approaches to quantifying the spectral impact of the species as well as underlying photochemical model assumptions. Thus, constraints on atmospheric abundances, even if just upper limits, by JWST have the potential to further our understanding of terrestrial atmospheric chemistry.
    Citations (33)
    The James Webb Space Telescope (JWST) will devote significant observing time to the study of exoplanets. It will not be serviceable as was the Hubble Space Telescope, and therefore the spacecraft/instruments will have a relatively limited life. It is important to get as much science as possible out of this limited observing time. We provide an analysis framework (including publicly released computational tools) that can be used to optimize lists of exoplanet targets for atmospheric characterization. Our tools take catalogs of planet detections, either simulated, or actual; categorize the targets by planet radius and equilibrium temperature; estimate planet masses; generate model spectra and simulated instrument spectra; perform a statistical analysis to determine if the instrument spectra can confirm an atmospheric detection; and finally, rank the targets within each category by observation time required. For a catalog of simulated Transiting Exoplanet Survey Satellite planet detections, we determine an optimal target ranking for the observing time available. Our results are generally consistent with other recent studies of JWST exoplanet target optimization. We show that assumptions about target planet atmospheric metallicity, instrument performance (especially the noise floor), and statistical detection threshold, can have a significant effect on target ranking. Over its full 10 yr (fuel-limited) mission, JWST has the potential to increase the number of atmospheres characterized by transmission spectroscopy by an order of magnitude (from about 50 currently to between 400 and 500).
    Citations (12)
    We present the Transit Monitoring in the South (TraMoS) project. TraMoS has monitored transits of 30 exoplanets with telescopes located in Chile since 2008, whit the following goals: (1) to refine the physical and/or orbital parameters of those exoplanet system, and (2) to search for variations in the mid-times of the transits and in other parameters such as orbital inclination or transit's depth, that could indicate the presence of additional bodies in the system. We highlight here the first results of TraMoS in three selected exoplanets.
    In this white paper, we assess the potential for JWST to characterize the atmospheres of super-Earth exoplanets, by simulating a range of transiting spectra with different masses and temperatures. Our results are based on a JWST simulator tuned to the expected performance of the workhorse spectroscopic instrument NIRSpec, and is based on the latest exoplanet transit models by Howe & Burrows (2012). This study is especially timely since the observing modes for the science instruments on JWST are finalized (Clampin 2010) and because NASA has selected the TESS mission as an upcoming Explorer. TESS is expected to identify more than 1000 transiting exoplanet candidates, including a sample of about 100 nearby (<50 pc) super- Earths (Ricker et al. 2010).
    Citations (2)
    The Mid-Infrared instrument (MIRI) on board the James Webb Space Telescope will perform the first ever characterization of young giant exoplanets observed by direct imaging in the 5-28 microns spectral range. This wavelength range is key for both determining the bolometric luminosity of the cool known exoplanets and for accessing the strongest ammonia bands. In conjunction with shorter wavelength observations, MIRI will enable a more accurate characterization of the exoplanetary atmospheric properties. Here we consider a subsample of the currently known exoplanets detected by direct imaging and we discuss their detectability with MIRI, either using the coronagraphic or the spectroscopic modes. By using the Exo-REM atmosphere model we calculate the mid-infrared emission spectra of fourteen exoplanets, and we simulate MIRI coronagraphic or spectroscopic observations. Specifically we analyze four coronagraphic observational setups, which depend on (i) the target-star and reference-star offset (0, 3, 14 mas), (ii) the wave-front-error (130, 204 nm rms), (iii) the telescope jitter amplitude (1.6, 7 mas). We then determine the signal-to-noise and integration time values for the coronagraphic targets whose planet-to-star contrasts range from 3.9 to 10.1 mag. We conclude that all the MIRI targets should be observable with different degrees of difficulty, which depends on the final in-flight instrument performances. Furthermore, we test for detection of ammonia in the atmosphere of the coolest targets. Finally, we present the case of HR 8799 b to discuss what MIRI observations can bring to the knowledge of a planetary atmosphere, either alone or in combination with shorter wavelength observations.
    Citations (30)
    This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWST's unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise ratio (S/N). Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e., exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes, and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.
    Spitzer Space Telescope
    Citations (282)
    &lt;p&gt;In the last 15 years, significant progress has been made in the field of atmospheric characterisation of exoplanets, utilising the most advanced instruments both on the ground and in space. Today, we are entering an era of very exiting prospects for the field of exoplanet characterisation. The James Webb Space Telescope (JWST) has been successfully launched, deployed and aligned, while ESA&amp;#8217;s M4 mission, Ariel, has been adopted and is planned to fly in 2029.&lt;/p&gt; &lt;p&gt;This era will be characterised by the large volume of data that will be delivered from the new observatories. In my talk I will discuss the challenges we have to face in order to analyse the large data volume expected in the next decade. I will discuss the lessons learnt in the past years using the Wide Field Camera 3 on HST - the most successful instrument for exoplanet characterisation - and I will present a next-generation pipeline for the analysis of exoplanet spectroscopic observations, together with the first implementation on JWST data.&lt;/p&gt;
    Citations (0)
    In this study, we analyze light curves and corresponding transit attributes of the exoplanets TrES-5b and WASP-43b. The mid-transit time of an exoplanet is the time in which the planet is in the middle of its transit. Over time, due to variations that arise after many periods, the error in the mid-transit time of the exoplanet increases. Because of this, constant observations of exoplanet mid-transit times through light curves are necessary to update the transit timing predictions. We made light curves with the EXOplanet Transit Interpretation Code (EXOTIC). To run with EXOTIC, we were given raw, uncalibrated TrES-5b images taken by the SRO telescope, managed by the Boyce-Astro project. Additionally, we requested and obtained images of WASP-43b using the Las Cumbres Observatory 0.4 m robotic telescopes. Within this work, we will explore the newly calculated mid-transit times and other transit properties to gain a better understanding of TrES-5b and WASP-43b.
    Citations (0)
    We present solutions of the transit light curves and transit timing variations (TTVs) analyses of the exoplanets HAT-P-5b, HAT-P-9b and HAT-P-25b. Transit light curves were collected at Çanakkale Onsekiz Mart University Observatory and TUBITAK National Observatory. The models were produced by WINFITTER program and stellar, planetary and orbital properties were obtained and discussed. We gave new transit times and generated TTVs with them by appending additional data based on Exoplanet Transit Database (ETD). Significant signals at the TTVs were also investigated.
    Citations (1)